ﻻ يوجد ملخص باللغة العربية
In this paper we study the enumeration and the construction, according to the number of ones, of particular binary words avoiding a fixed pattern. The growth of such words can be described by particular jumping and marked succession rules. This approach enables us to obtain an algorithm which constructs all binary words having a fixed number of ones and then kills those containing the forbidden pattern.
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X subseteq F^*$. We say that a submonoid $M$ generated by $k$ elements of $A^*$ is {em $k$
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X subseteq F^*$. A submonoid $M$ generated by $k$ elements of $A^*$ is $k$-maximal if ther
An infinte word w avoids a pattern p with the involution t if there is no substitution for the variables in p and no involution t such that the resulting word is a factor of w. We investigate the avoidance of patterns with respect to the size of the
Minimal forbidden factors are a useful tool for investigating properties of words and languages. Two factorial languages are distinct if and only if they have different (antifactorial) sets of minimal forbidden factors. There exist algorithms for com
The notion of a $p$-Riordan graph generalizes that of a Riordan graph, which, in turn, generalizes the notions of a Pascal graph and a Toeplitz graph. In this paper we introduce the notion of a $p$-Riordan word, and show how to encode $p$-Riordan gra