ﻻ يوجد ملخص باللغة العربية
Using the Density Matrix Renormalization Group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the $(t_{2g})^{4}$ sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard $U$ and spin-orbit coupling $lambda$, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the Dynamical Mean Field Theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase to an excitonic insulator with increasing $lambda$ at intermediate $U$. In the strong $U$ coupling limit, we find a non-magnetic insulator with an effective angular momentum $langle(textbf{J}^{eff})^{2}rangle e 0$ near the excitonic phase, smoothly connected to the $langle(textbf{J}^{eff})^{2}rangle = 0$ regime. We also provide a list of quasi-one dimensional materials where the physics discussed in this publication could be realized.
We investigate the effect of the Coulomb interaction, $U_{cf}$, between the conduction and f electrons in the periodic Anderson model using the density-matrix renormalization-group algorithm. We calculate the excitation spectrum of the half-filled sy
The ground state of a hole-doped t-t-J ladder with four legs favors a striped charge distribution. Spin excitation from the striped ground state is known to exhibit incommensurate spin excitation near q=(pi,pi) along the leg direction (qx direction).
The recent discovery of superconductivity under high pressure in the ladder compound BaFe$_2$S$_3$ has opened a new field of research in iron-based superconductors with focus on quasi one-dimensional geometries. In this publication, using the Density
A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is show
We reexamine the one-dimensional spin-1 $XXZ$ model with on-site uniaxial single-ion anisotropy as to the appearance and characterization of the symmetry-protected topological Haldane phase. By means of large-scale density-matrix renormalization grou