ﻻ يوجد ملخص باللغة العربية
The ground state of a hole-doped t-t-J ladder with four legs favors a striped charge distribution. Spin excitation from the striped ground state is known to exhibit incommensurate spin excitation near q=(pi,pi) along the leg direction (qx direction). However, an outward dispersion from the incommensurate position toward q=(0,pi) is strong in intensity, inconsistent with inelastic neutron scattering (INS) experiment in hole-doped cuprates. Motivated by this inconsistency, we use the t-t-J model with m x n=96 lattice sites by changing lattice geometry from four-leg (24x4) to rectangle (12x8) shape and investigate the dynamical spin structure factor by using the dynamical density matrix renormalization group. We find that the outward dispersion has weak spectral weights in the 12x8 lattice, accompanied with the decrease of excitation energy close to q=(pi,pi), being consistent with the INS data. In the 12x8 lattice, weakening of incommensurate spin correlation is realized even in the presence of the striped charge distribution. For further investigation of geometry related spin dynamics, we focus on direction dependent spin excitation reported by recent resonant inelastic x-ray scattering (RIXS) for cuprate superconductors and obtain a consistent result with RIXS by examining an 8x8 t-t-J square lattice.
We study the one dimensional t-t-J model for generic couplings using two complementary theories, the extremely correlated Fermi liquid theory and time-dependent density matrix renormalization group over a broad energy scale. The two methods provide a
We present numeric results for ground state and angle resolved photoemission spectra (ARPES) for single hole in t-J model coupled to optical phonons. The systematic-error free diagrammatic Monte Carlo is employed where the Feynman graphs for the Mats
We present a systematic study of the phase diagram of the $t{-}t^prime{-}J$ model by using the Greens function Monte Carlo (GFMC) technique, implemented within the fixed-node (FN) approximation and a wave function that contains both antiferromagnetic
Drude weight of optical conductivity is calculated at zero temperature by exact diagonalization for the two-dimensional t-J model with the two-particle term, $W$. For the ordinary t-J model with $W$=0, the scaling of the Drude weight $D propto delta^
Determination of the parameter regime in which two holes in the t-J model form a bound state represents a long standing open problem in the field of strongly correlated systems. By applying and systematically improving the exact diagonalization metho