ترغب بنشر مسار تعليمي؟ اضغط هنا

OGLE-2016-BLG-0693LB: Probing the Brown Dwarf Desert with Microlensing

78   0   0.0 ( 0 )
 نشر من قبل Yoon-Hyun Ryu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of microlensing event OGLE-2016-BLG-0693, based on the survey-only microlensing observations by the OGLE and KMTNet groups. In order to analyze the light curve, we consider the effects of parallax, orbital motion, and baseline slope, and also refine the result using a Galactic model prior. From the microlensing analysis, we find that the event is a binary composed of a low-mass brown dwarf 49+-20 M_J companion and a K- or G-dwarf host, which lies at a distance 5.0+-0.6 kpc toward the Galactic bulge. The projected separation between the brown dwarf and its host star is less than 5 AU, and thus it is likely that the brown dwarf companion is located in the brown dwarf desert.



قيم البحث

اقرأ أيضاً

69 - C. Han , A. Udalski , T. Sumi 2017
We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection of both finite-source and microlens-parallax effects, we are able to measure both the masses $M_ 1sim 0.05 M_odot$, $M_2sim 0.01 M_odot$, and distance $D_{rm L} sim 4.5$ kpc, as well as the projected separation $a_perp sim 0.33$ au. This is the third brown-dwarf binary detected using the microlensing method, demonstrating the usefulness of microlensing in detecting field brown-dwarf binaries with separations less than 1 au.
177 - C. Ranc , A. Cassan (1 2015
We present the analysis of MOA-2007-BLG-197Lb, the first brown dwarf companion to a Sun-like star detected through gravitational microlensing. The event was alerted and followed-up photometrically by a network of telescopes from the PLANET, MOA, and uFUN collaborations, and observed at high angular resolution using the NaCo instrument at the VLT. From the modelling of the microlensing light curve, we derived the binary lens separation in Einstein radius units (s~1.13) and a mass ratio of (4.732+/-0.020)x10^{-2}. Annual parallax, lens orbital motion and finite source effects were included in the models. To recover the lens systems physical parameters, we combined the resulting light curve best-fit parameters with (J,H,Ks) magnitudes obtained with VLT NaCo and calibrated using IRSF and 2MASS data. We derived a lens total mass of 0.86+/-0.04 Msun and a lens distance of 4.2+/-0.3 kpc. We find that the companion of MOA-2007-BLG-197L is a brown dwarf of 41+/-2 Mjup observed at a projected separation of 4.3+/-0.1 AU, and orbits a 0.82+/-0.04 Msun G-K dwarf star. We study the statistical properties of this population of brown dwarfs detected by microlensing, transit, radial velocity, and direct imaging (most of these objects orbit solar-type stars), and we performed a two-dimensional, non-parametric probability density distribution fit to the data, which draws a structured brown dwarf landscape. We confirm the existence of a region that is strongly depleted in objects at short periods and intermediate masses (P<30 d, M~30-60 Mjup), but also find an accumulation of objects around P~500 d and M~20 Mjup, as well as another depletion region at long orbital periods (P>500 d) and high masses (M>50 Mjup). While these data provide important clues on mechanisms of brown dwarfs formation, more data are needed to establish their relative importance, in particular as a function of host star mass.
The microlensing event OGLE-2008-BLG-510 is characterised by an evident asymmetric shape of the peak, promptly detected by the ARTEMiS system in real time. The skewness of the light curve appears to be compatible both with binary-lens and binary-sour ce models, including the possibility that the lens system consists of an M dwarf orbited by a brown dwarf. The detection of this microlensing anomaly and our analysis demonstrates that: 1) automated real-time detection of weak microlensing anomalies with immediate feedback is feasible, efficient, and sensitive, 2) rather common weak features intrinsically come with ambiguities that are not easily resolved from photometric light curves, 3) a modelling approach that finds all features of parameter space rather than just the `favourite model is required, and 4) the data quality is most crucial, where systematics can be confused with real features, in particular small higher-order effects such as orbital motion signatures. It moreover becomes apparent that events with weak signatures are a silver mine for statistical studies, although not easy to exploit. Clues about the apparent paucity of both brown-dwarf companions and binary-source microlensing events might hide here.
We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planets mass M_p= 13.4+-0.9 M_J places it right at the deuterium burning limit, i.e., the conventional boundary between planets and brown dwarfs. Its existence raises the question of whether such objects are really planets (formed within the disks of their hosts) or failed stars (low mass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf M_host = 0.89+-0.07 M_sun and the planet has a semi-major axis a~2.0 AU. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultra-dense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over <1% of an orbital period.
306 - Y. K. Jung , A. Udalski , T. Sumi 2014
We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{rm max}s im 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components of $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.096 pm 0.013~M_{odot}$ and $M_{2} = 0.012 pm 0.002~M_{odot}$, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is $3.04 pm 0.31~{rm kpc}$ and the projected separation between the lens components is $0.80 pm 0.08~{rm AU}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا