ترغب بنشر مسار تعليمي؟ اضغط هنا

OGLE-2016-BLG-1469L: Microlensing Binary Composed of Brown Dwarfs

70   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection of both finite-source and microlens-parallax effects, we are able to measure both the masses $M_1sim 0.05 M_odot$, $M_2sim 0.01 M_odot$, and distance $D_{rm L} sim 4.5$ kpc, as well as the projected separation $a_perp sim 0.33$ au. This is the third brown-dwarf binary detected using the microlensing method, demonstrating the usefulness of microlensing in detecting field brown-dwarf binaries with separations less than 1 au.



قيم البحث

اقرأ أيضاً

We report the discovery, via the microlensing method, of a new very-low-mass binary system. By combining measurements from Earth and from the Spitzer telescope in Earth-trailing orbit, we are able to measure the microlensing parallax of the event, an d find that the lens likely consists of an $(12.0 pm 0.6) M_{rm J}$ + $(15.7 pm 1.5) M_{rm J}$ super-Jupiter / brown-dwarf pair. The binary is located at a distance of $(3.08 pm 0.18)$ kpc in the Galactic Plane, and the components have a projected separation of $(0.43 pm 0.03)$ AU. Two alternative solutions with much lower likelihoods are also discussed, an 8- and 6-$M_{rm J}$ model and a 90- and 70-$M_{rm J}$ model. Although disfavored at the 3-$sigma$ and 5-$sigma$ levels, these alternatives cannot be rejected entirely. We show how the more-massive of these models could be tested with future direct imaging.
We present an analysis of microlensing event OGLE-2016-BLG-0693, based on the survey-only microlensing observations by the OGLE and KMTNet groups. In order to analyze the light curve, we consider the effects of parallax, orbital motion, and baseline slope, and also refine the result using a Galactic model prior. From the microlensing analysis, we find that the event is a binary composed of a low-mass brown dwarf 49+-20 M_J companion and a K- or G-dwarf host, which lies at a distance 5.0+-0.6 kpc toward the Galactic bulge. The projected separation between the brown dwarf and its host star is less than 5 AU, and thus it is likely that the brown dwarf companion is located in the brown dwarf desert.
296 - Y. K. Jung , A. Udalski , T. Sumi 2014
We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{rm max}s im 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components of $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.096 pm 0.013~M_{odot}$ and $M_{2} = 0.012 pm 0.002~M_{odot}$, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is $3.04 pm 0.31~{rm kpc}$ and the projected separation between the lens components is $0.80 pm 0.08~{rm AU}$.
115 - C. Han , A. Udalski , A. Gould 2017
We present the analysis of OGLE-2016-BLG-0613, for which the lensing light curve appears to be that of a typical binary-lens event with two caustic spikes but with a discontinuous feature on the trough between the spikes. We find that the discontinuo us feature was produced by a planetary companion to the binary lens. We find 4 degenerate triple-lens solution classes, each composed of a pair of solutions according to the well-known wide/close planetary degeneracy. One of these solution classes is excluded due to its relatively poor fit. For the remaining three pairs of solutions, the most-likely primary mass is about $M_1sim 0.7,M_odot$ while the planet is a super-Jupiter. In all cases the system lies in the Galactic disk, about half-way toward the Galactic bulge. However, in one of these three solution classes, the secondary of the binary system is a low-mass brown dwarf, with relative mass ratios (1 : 0.03 : 0.003), while in the two others the masses of the binary components are comparable. These two possibilities can be distinguished in about 2024 when the measured lens-source relative proper motion will permit separate resolution of the lens and source.
We analyze the gravitational binary-lensing event OGLE-2016-BLG-0156, for which the lensing light curve displays pronounced deviations induced by microlens-parallax effects. The light curve exhibits 3 distinctive widely-separated peaks and we find th at the multiple-peak feature provides a very tight constraint on the microlens-parallax effect, enabling us to precisely measure the microlens parallax $pi_{rm E}$. All the peaks are densely and continuously covered from high-cadence survey observations using globally located telescopes and the analysis of the peaks leads to the precise measurement of the angular Einstein radius $theta_{rm E}$. From the combination of the measured $pi_{rm E}$ and $theta_{rm E}$, we determine the physical parameters of the lens. It is found that the lens is a binary composed of two M dwarfs with masses $M_1=0.18pm 0.01 M_odot$ and $M_2=0.16pm 0.01 M_odot$ located at a distance $D_{rm L}= 1.35pm 0.09 {rm kpc}$. According to the estimated lens mass and distance, the flux from the lens comprises an important fraction, $sim 25%$, of the blended flux. The bright nature of the lens combined with the high relative lens-source motion, $mu=6.94pm 0.50 {rm mas} {rm yr}^{-1}$, suggests that the lens can be directly observed from future high-resolution follow-up observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا