ﻻ يوجد ملخص باللغة العربية
A Lie (super)algebra with a non-degenerate invariant symmetric bilinear form will be called a NIS-Lie (super)algebra. The double extension of a NIS-Lie (super)algebra is the result of simultaneously adding to it a central element and an outer derivation so that the larger algebra has also a NIS. Affine loop algebras, Lie (super)algebras with symmetrizable Cartan matrix over any field, Manin triples, symplectic reflection (super)algebras are among the Lie (super)algebras suitable to be doubly extended. We consider double extensions of Lie superalgebras in characteristic 2, and concentrate on peculiarities of these notions related with the possibility for the bilinear form, the center, and the derivation to be odd. Two Lie superalgebras we discovered by this method are indigenous to the characteristic 2.
As is well-known, the dimension of the space spanned by the non-degenerate invariant symmetric bilinear forms (NISes) on any simple finite-dimensional Lie algebra or Lie superalgebra is equal to at most 1 if the characteristic of the algebraically cl
A Lie (super)algebra with a non-degenerate invariant symmetric bilinear form $B$ is called a nis-(super)algebra. The double extension $mathfrak{g}$ of a nis-(super)algebra $mathfrak{a}$ is the result of simultaneous adding to $mathfrak{a}$ a central
Over algebraically closed fields of positive characteristic, for simple Lie (super)algebras, and certain Lie (super)algebras close to simple ones, with symmetric root systems (such that for each root, there is minus it of the same multiplicity) and o
A double extension ($mathscr{D}$ extension) of a Lie (super)algebra $mathfrak a$ with a non-degenerate invariant symmetric bilinear form $mathscr{B}$, briefly: a NIS-(super)algebra, is an enlargement of $mathfrak a$ by means of a central extension an
We present new constructions of several of the exceptional simple Lie superalgebras in characteristic $p = 3$ and $p = 5$ by considering the images of exceptional Lie algebras with a nilpotent derivation under the semisimplification functor from $mat