ﻻ يوجد ملخص باللغة العربية
Over algebraically closed fields of positive characteristic, for simple Lie (super)algebras, and certain Lie (super)algebras close to simple ones, with symmetric root systems (such that for each root, there is minus it of the same multiplicity) and of ranks most needed in an approach to the classification of simple vectorial Lie superalgebras, we list the outer derivations and nontrivial central extensions. When the answer is clear for the infinite series, it is given for any rank. We also list the outer derivations and nontrivial central extensions of one series of nonsymmetric, namely, periplectic Lie superalgebras (of any rank) preserving the nondegenerate supersymmetric odd bilinear forms, and of the Lie algebras obtained from periplectic Lie superalgebras by desuperization when the characteristic of the ground field is equal to 2. We also list the outer derivations and nontrivial central extensions of an analog of the rank 2 exceptional Lie algebra discovered by Shen Guangyu. Several results are counterintuitive.
We say that a~Lie (super)algebra is ``symmetric if with every root (with respect to the maximal torus) it has its opposite of the same multiplicity. Over algebraically closed fields of positive characteristics we describe the deforms (results of defo
The inverses of indecomposable Cartan matrices are computed for finite-dimensional Lie algebras and Lie superalgebras over fields of any characteristic, and for hyperbolic (almost affine) complex Lie (super)algebras. We discovered three yet inexplica
In this paper, we introduce the notion Lie-derivation. This concept generalizes derivations for non-Lie Leibniz algebras. We study these Lie-derivations in the case where their image is contained in the Lie-center, call them Lie-central derivations.
In the article at hand, we sketch how, by utilizing nilpotency to its fullest extent (Engel, Super Engel) while using methods from the theory of universal enveloping algebras, a complete description of the indecomposable representations may be reache
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st