ﻻ يوجد ملخص باللغة العربية
The quantum Zeno effect is the suppression of Hamiltonian evolution by repeated observation, resulting in the pinning of the state to an eigenstate of the measurement observable. Using measurement only, control of the state can be achieved if the observable is slowly varied such that the state tracks the now time-dependent eigenstate. We demonstrate this using a circuit-QED readout technique that couples to a dynamically controllable observable of a qubit. Continuous monitoring of the measurement record allows us to detect an escape from the eigenstate, thus serving as a built-in form of error detection. We show this by post-selecting on realizations with arbitrarily high fidelity with respect to the target state. Our dynamical measurement operator technique offers a new tool for numerous forms of quantum feedback protocols, including adaptive measurements and rapid state purification.
It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We deri
The quantum Zeno effect (QZE) is the phenomenon where the unitary evolution of a quantum state is suppressed e.g. due to frequent measurements. Here, we investigate the use of the QZE in a class of communication complexity problems (CCPs). Quantum en
Projective measurements are an essential element of quantum mechanics. In most cases, they cause an irreversible change of the quantum system on which they act. However, measurements can also be used to stabilize quantum states from decay processes,
In this paper, we present a coherence protection method based upon a multidimensional generalization of the Quantum Zeno Effect, as well as ideas from the coding theory. The non-holonomic control technique is employed as a physical tool which allows
The quantum Zeno effect describes the inhibition of quantum evolution by frequent measurements. Here, we propose a scheme for entangling two given photons based on this effect. We consider a linear-optics set-up with an absorber medium whose two-phot