ﻻ يوجد ملخص باللغة العربية
It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We derive rigorous performance bounds which demonstrate that the Zeno effect can be used to protect appropriately encoded arbitrary states to arbitrary accuracy, while at the same time allowing for universal quantum computation or quantum control.
The quantum Zeno effect is the suppression of Hamiltonian evolution by repeated observation, resulting in the pinning of the state to an eigenstate of the measurement observable. Using measurement only, control of the state can be achieved if the obs
We prove the quantum Zeno effect in open quantum systems whose evolution, governed by quantum dynamical semigroups, is repeatedly and frequently interrupted by the action of a quantum operation. For the case of a quantum dynamical semigroup with a bo
The effect of the anti-rotating terms on the short-time evolution and the quantum Zeno (QZE) and anti-Zeno (AQZE) effects is studied for a two-level system coupled to a bosonic environment. A unitary transformation and perturbation theory are used to
In this paper, we present a coherence protection method based upon a multidimensional generalization of the Quantum Zeno Effect, as well as ideas from the coding theory. The non-holonomic control technique is employed as a physical tool which allows
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show