ﻻ يوجد ملخص باللغة العربية
We study wave propagation in a non-relativistic cold quark-gluon plasma immersed in a constant magnetic field. Starting from the Euler equation we derive linear wave equations and investigate their stability and causality. We use a generic form for the equation of state, the EOS derived from the MIT bag model and also a variant of the this model which includes gluon degrees of freedom. The results of this analysis may be relevant for perturbations propagating through the quark matter phase in the core of compact stars and also for perturbations propagating in the low temperature quark-gluon plasma formed in low energy heavy ion collisions, to be carried out at FAIR and NICA.
We study weakly nonlinear wave perturbations propagating in a cold nonrelativistic and magnetized ideal quark-gluon plasma. We show that such perturbations can be described by the Ostrovsky equation. The derivation of this equation is presented for t
We establish a holographic bottom-up model which covers both the baryonic and quark matter phases in cold and dense QCD. This is obtained by including the baryons using simple approximation schemes in the V-QCD model, which also includes the backreac
We study nonlinear waves in a nonrelativistic ideal and cold quark gluon plasma immersed in a strong uniform magnetic field. In the context of nonrelativistic hydrodynamics with an external magnetic field we derive a nonlinear wave equation for baryo
We have pointed out the possibility of quantum Hall effect or quantum patterns of transportation in a degenerate strongly magnetized quark matter, which might be expected inside a highly dense compact star. An anisotropic pattern of electrical conduc
The kurtosis and skewness of net baryon-number fluctuations are studied for the magnetized phase diagram of three-flavor quark matter within the Polyakov extended Nambu$-$Jona-Lasinio model. Two models with magnetic catalysis and inverse magnetic cat