ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical conductivity of strongly magnetized dense quark matter -- possibility of quantum hall effect

295   0   0.0 ( 0 )
 نشر من قبل Aritra Bandyopadhyay
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have pointed out the possibility of quantum Hall effect or quantum patterns of transportation in a degenerate strongly magnetized quark matter, which might be expected inside a highly dense compact star. An anisotropic pattern of electrical conductivity and resistivity tensor in classical and quantum cases is explored by considering cyclotron motion and Landau quantization respectively. With increasing magnetic field, classical to quantum transitions are realized through enhanced/reduced resistivity/conductivity with jumping pattern. Considering QCD relaxation time scale of 10 fm, $eBapprox (1-4) m_pi^2$ might be considered as strong magnetic field for massless and degenerate quark matter with quark chemical potential $muapprox 0.2-0.4$ GeV. Beyond these threshold ranges of magnetic field, perpendicular motion of quarks might be stopped and 3 $rightarrow$ 1 dimensionally reduced conduction picture might be established.



قيم البحث

اقرأ أيضاً

A generalized Ohms law is derived to treat strongly magnetized plasmas in which the electron gyrofrequency significantly exceeds the electron plasma frequency. The frictional drag due to Coulomb collisions between electrons and ions is found to shift , producing an additional transverse resistivity term in the generalized Ohms law that is perpendicular to both the current ($vc{J}$) and the Hall ($vc{J} times vc{B}$) direction. In the limit of very strong magnetization, the parallel resistivity is found to increase by a factor of 3/2, and the perpendicular resistivity to scale as $ln (omega_{ce} tau_e)$, where $omega_{ce} tau_e$ is the Hall parameter. Correspondingly, the parallel conductivity coefficient is reduced by a factor of 2/3, and the perpendicular conductivity scales as $ln(omega_{ce} tau_e)/(omega_{ce} tau_e)^2$. These results suggest that strong magnetization significantly changes the magnetohydrodynamic evolution of a plasma.
We study wave propagation in a non-relativistic cold quark-gluon plasma immersed in a constant magnetic field. Starting from the Euler equation we derive linear wave equations and investigate their stability and causality. We use a generic form for t he equation of state, the EOS derived from the MIT bag model and also a variant of the this model which includes gluon degrees of freedom. The results of this analysis may be relevant for perturbations propagating through the quark matter phase in the core of compact stars and also for perturbations propagating in the low temperature quark-gluon plasma formed in low energy heavy ion collisions, to be carried out at FAIR and NICA.
In this letter, we investigate the anomalous Hall effect in dense QCD matter. When the dual chiral density wave which is the spatially modulated chiral condensate appears in the medium, it gives rise to two Weyl points to the single-particle energy-s pectrum and then the anomalous Hall conductivity becomes nonzero. Then, dense QCD matter is analogous to the Weyl semimetal. The direct calculation of the Hall conductivity by way of Kubos linear response theory gives the term proportional to the distance between the Weyl points. Unlike the Weyl semimetal, there appears the additional contribution induced by axial anomaly.
Recently, transport coefficients viz. shear viscosity, electrical conductivity etc. of strongly interacting matter produced in heavy-ion collisions have drawn considerable interest. We study the normalised electrical conductivity ($sigma_{rm el}$/T) of hot QCD matter as a function of temperature (T) using the Color String Percolation Model (CSPM). We also study the temperature dependence of shear viscosity and its ratio with electrical conductivity for the QCD matter. We compare CSPM estimations with various existing results and lattice Quantum Chromodynamics (lQCD) predictions with (2+1) dynamical flavours. We find that $sigma_{rm el}$/T in CSPM has a very weak dependence on the temperature. We compare CSPM results with those obtained in Boltzmann Approach to Multi-Parton Scatterings (BAMPS) model. A good agreement is found between CSPM results and predictions of BAMPS with fixed strong coupling constant.
We calculate the dimensionless Fermi liquid parameters (FLPs), $F_{0,1}^{sym}$ and $F_{0,1}^{asym}$, for spin asymmetric dense quark matter. In general, the FLPs are infrared divergent due to the exchange of massless gluons. To remove such divergence s, the Hard Density Loop (HDL) corrected gluon propagator is used. The FLPs so determined are then invoked to calculate magnetic properties such as magnetization $langle Mrangle$ and magnetic susceptibility $chi_M$ of spin polarized quark matter. Finally, we investigate the possibility of magnetic instability by studying the density dependence of $langle Mrangle$ and $chi_M$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا