ﻻ يوجد ملخص باللغة العربية
$^{13}$C nuclear magnetic resonance measurements were performed for a single-component molecular material Zn(tmdt)$_{2}$, in which tmdts form an arrangement similar to the so-called ${kappa}$-type molecular packing in quasi-two-dimensional Mott insulators and superconductors. Detailed analysis of the powder spectra uncovered local spin susceptibility in the tmdt ${pi}$ orbitals. The obtained shift and relaxation rate revealed the singlet-triplet excitations of the ${pi}$ spins, indicating that Zn(tmdt)$_{2}$ is a spin-gapped Mott insulator with exceptionally large electron correlations compared to conventional molecular Mott systems.
X-ray absorption near edge spectra (XANES) and magnetization of Zn doped MnV2O4 have been measured and from the magnetic measurement the critical exponents and magnetocaloric effect have been estimated. The XANES study indicates that Zn doping does n
In an electronic system with various interactions intertwined, revealing the origin of its many-body ground state is challenging and a direct experimental way to verify the correlated nature of an insulator has been lacking. Here we demonstrate a way
We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be ma
Using the time-dependent density-matrix renormalization group (tDMRG), we study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expect
In electronic solids with strong spin-orbit interactions (SOIs), the spin and orbital degrees of freedom of an electron are quantum mechanically entangled, which may result in an exotic multipolar order instead of a conventional dipolar order such as