ﻻ يوجد ملخص باللغة العربية
We consider finite-dimensional irreducible transitive graded Lie algebras $L = sum_{i=-q}^rL_i$ over algebraically closed fields of characteristic three. We assume that the null component $L_0$ is classical and reductive. The adjoint representation of $L$ on itself induces a representation of the commutator subalgebra $L_0$ of the null component on the minus-one component $L_{-1}.$ We show that if the depth $q$ of $L$ is greater than one, then this representation must be restricted.
We investigate the graded Lie algebras of Cartan type $W$, $S$ and $H$ in characteristic 2 and determine their simple constituents and some exceptional isomorphisms between them. We also consider the graded Lie algebras of Cartan type $K$ in characte
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform no
We study the general properties of commutative differential graded algebras in the category of representations over a reductive algebraic group with an injective central cocharacter. Besides describing the derived category of differential graded modu
Motivated by the recent progress towards classification of simple finite-dimensional Lie algebras over an algebraically closed field of characteristic $2$, we investigate such $15$-dimensional algebras.
The property of degeneration of modular graded Lie algebras, first investigated by B. Weisfeiler, is analyzed. Transitive irreducible graded Lie algebras $L=sum_{iin mathbb Z}L_i,$ over an algebraically closed field of characteristic $p>2,$ with clas