ﻻ يوجد ملخص باللغة العربية
The property of degeneration of modular graded Lie algebras, first investigated by B. Weisfeiler, is analyzed. Transitive irreducible graded Lie algebras $L=sum_{iin mathbb Z}L_i,$ over an algebraically closed field of characteristic $p>2,$ with classical reductive component $L_0$ are considered. We show that if a non-degenerate Lie algebra $L$ contains a transitive degenerate subalgebra $L$ such that $dim L_1>1,$ then $L$ is an infinite-dimensional Lie algebra.
In this paper solvable Leibniz algebras with naturally graded non-Lie $p$-filiform $(n-pgeq4)$ nilradical and with one-dimensional complemented space of nilradical are described. Moreover, solvable Leibniz algebras with abelian nilradical and extrema
$N$-derivation is the natural generalization of derivation and triple derivation. Let ${cal L}$ be a finitely generated Lie algebra graded by a finite dimensional Cartan subalgebra. In this paper, a sufficient condition for Lie $N$-derivation algebra
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform no
We investigate the graded Lie algebras of Cartan type $W$, $S$ and $H$ in characteristic 2 and determine their simple constituents and some exceptional isomorphisms between them. We also consider the graded Lie algebras of Cartan type $K$ in characte
A class of axial decomposition algebras with Miyamoto group generated by two Miyamoto automorphisms and three eigenvalues $0,1$ and $eta$ is introduced and classified in the case with $eta otin{0,1,frac{1}{2}}$. This class includes specializations of