ﻻ يوجد ملخص باللغة العربية
Simulation-based image quality metrics are adapted and investigated for characterizing the parameter dependences of linear iterative image reconstruction for DBT. Three metrics based on 2D DBT simulation are investigated: (1) a root-mean-square-error (RMSE) between the test phantom and reconstructed image, (2) a gradient RMSE where the comparison is made after taking a spatial gradient of both image and phantom, and (3) a region-of-interest (ROI) Hotelling observer (HO) for signal-known-exactly/background-known-exactly (SKE/BKE) and signal-known-exactly/background-known-statistically (SKE/BKS) detection tasks. Two simulation studies are performed using the aforementioned metrics, varying voxel aspect ratio and regularization strength for two types of Tikhonov regularized least-squares optimization. The RMSE metrics are applied to a 2D test phantom and the ROI-HO metric is applied to two tasks relevant to DBT: large, low contrast lesion detection and small, high contrast microcalcification detection. The RMSE metric trends are compared with visual assessment of the reconstructed test phantom. The ROI-HO metric trends are compared with 3D reconstructed images from ACR phantom data acquired with a Hologic Selenia Dimensions DBT system. Sensitivity of image RMSE to mean pixel value is found to limit its applicability to the assessment of DBT image reconstruction. Image gradient RMSE is insensitive to mean pixel value and appears to track better with subjective visualization of the reconstructed bar-pattern phantom. The ROI-HO metric shows an increasing trend with regularization strength for both forms of Tikhonov-regularized least-squares; however, this metric saturates at intermediate regularization strength indicating a point of diminishing returns for signal detection. Visualization with reconstructed ACR phantom images appears to show a similar dependence with regularization strength.
Fiber-like features are an important aspect of breast imaging. Vessels and ducts are present in all breast images, and spiculations radiating from a mass can indicate malignancy. Accordingly, fiber objects are one of the three types of signals used i
There are a number of clinically relevant tasks in digital breast tomosynthesis (DBT) involving the detection and visual assessment of fiber-like structures such as Coopers ligaments, blood vessels, and spiculated lesions. Such structures can exhibit
We present the first evaluation of a recently developed silicon-strip detector for photon-counting dual-energy breast tomosynthesis. The detector is well suited for tomosynthesis with high dose efficiency and intrinsic scatter rejection. A method was
Automated methods for breast cancer detection have focused on 2D mammography and have largely ignored 3D digital breast tomosynthesis (DBT), which is frequently used in clinical practice. The two key challenges in developing automated methods for DBT
In radial fast spin-echo MRI, a set of overlapping spokes with an inconsistent T2 weighting is acquired, which results in an averaged image contrast when employing conventional image reconstruction techniques. This work demonstrates that the problem