ترغب بنشر مسار تعليمي؟ اضغط هنا

3D shape of asteroid (6)~Hebe from VLT/SPHERE imaging: Implications for the origin of ordinary H chondrites

116   0   0.0 ( 0 )
 نشر من قبل Micha\\\"el Marsset
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The high-angular-resolution capability of the new-generation ground-based adaptive-optics camera SPHERE at ESO VLT allows us to assess, for the very first time, the cratering record of medium-sized (D~100-200 km) asteroids from the ground, opening the prospect of a new era of investigation of the asteroid belts collisional history. Aims. We investigate here the collisional history of asteroid (6) Hebe and challenge the idea that Hebe may be the parent body of ordinary H chondrites, the most common type of meteorites found on Earth (~34% of the falls). Methods. We observed Hebe with SPHERE as part of the science verification of the instrument. Combined with earlier adaptive-optics images and optical light curves, we model the spin and three-dimensional (3D) shape of Hebe and check the consistency of the derived model against available stellar occultations and thermal measurements. Results. Our 3D shape model fits the images with sub-pixel residuals and the light curves to 0.02 mag. The rotation period (7.274 47 h), spin (343 deg,+47 deg), and volume-equivalent diameter (193 +/- 6km) are consistent with previous determinations and thermophysical modeling. Hebes inferred density is 3.48 +/- 0.64 g.cm-3 , in agreement with an intact interior based on its H-chondrite composition. Using the 3D shape model to derive the volume of the largest depression (likely impact crater), it appears that the latter is significantly smaller than the total volume of close-by S-type H-chondrite-like asteroid families. Conclusions. Our results imply that (6) Hebe is not the most likely source of H chondrites. Over the coming years, our team will collect similar high-precision shape measurements with VLT/SPHERE for ~40 asteroids covering the main compositional classes, thus providing an unprecedented dataset to investigate the origin and collisional evolution of the asteroid belt.



قيم البحث

اقرأ أيضاً

Chondrites are one of the most primitive objects in the solar system, and keep the record of the degree of thermal metamorphism experienced in their parent bodies. This thermal history can be classified by the petrologic type. We investigate the ther mal evolution of planetesimals to account for the current abundances (known as the fall statistics) of petrologic types 3 - 6 ordinary chondrites. We carry out a number of numerical calculations in which formation times and sizes of planetesimals are taken as parameters. We find that planetesimals that form within 2.0 Myr after the formation of Ca-Al-rich inclusions (CAIs) can contain all petrologic types of ordinary chondrites. Our results also indicate that plausible scenarios of planetesimal formation, which are consistent with the fall statistics, are that planetesimals with radii larger than 60 km start to form around 2.0 Myr after CAIs and/or that ones with radii less than 50 km should be formed within 1.5 Myr after CAIs. Thus, thermal modelling of planetesimals is important for revealing the occurrence and amount of metamorphosed chondrites, and for providing invaluable insights into planetesimal formation.
117 - G. Cugno 2018
Aims: We want to detect and quantify observables related to accretion processes occurring locally in circumstellar disks, which could be attributed to young forming planets. We focus on objects known to host protoplanet candidates and/or disk structu res thought to be the result of interactions with planets. Methods: We analyzed observations of 6 young stars (age $3.5-10$ Myr) and their surrounding environments with the SPHERE/ZIMPOL instrument on the VLT in the H$alpha$ filter (656 nm) and a nearby continuum filter (644.9 nm). Results: We re-detect the known accreting M-star companion HD142527 B with the highest published signal to noise to date in both H$alpha$ and the continuum. We derive new astrometry ($r = 62.8^{+2.1}_{-2.7}$ mas and $text{PA} = (98.7,pm1.8)^circ$) and photometry ($Delta$N_Ha=$6.3^{+0.2}_{-0.3}$ mag, $Delta$B_Ha=$6.7pm0.2$ mag and $Delta$Cnt_Ha=$7.3^{+0.3}_{-0.2}$ mag) for the companion in agreement with previous studies, and estimate its mass accretion rate ($dot{M}approx1-2,times10^{-10},M_odottext{ yr}^{-1}$). A faint point-like source around HD135344 B (SAO206462) is also investigated, but a second deeper observation is required to reveal its nature. No other companions are detected. In the framework of our assumptions we estimate detection limits at the locations of companion candidates around HD100546, HD169142 and MWC758 and calculate that processes involving H$alpha$ fluxes larger than $sim8times10^{-14}-10^{-15},text{erg/s/cm}^2$ ($dot{M}>10^{-10}-10^{-12},M_odottext{ yr}^{-1}$) can be excluded. Furthermore, flux upper limits of $sim10^{-14}-10^{-15},text{erg/s/cm}^2$ ($dot{M}<10^{-11}-10^{-12},M_odot text{ yr}^{-1}$) are estimated within the gaps identified in the disks surrounding HD135344B and TW Hya.
We report microscopic, cathodoluminescence, chemical and O isotopic measurements of FeO-poor isolated olivine grains (IOG) in the carbonaceous chondrites Allende (CV3), Northwest Africa 5958 (C2-ung), Northwest Africa 11086 (CM2-an), Allan Hills 7730 7 (CO3.0). The general petrographic, chemical and isotopic similarity with bona fide type I chondrules confirms that the IOG derived from them. The concentric CL zoning, reflecting a decrease in refractory elements toward the margins, and frequent rimming by enstatite are taken as evidence of interaction of the IOG with the gas as stand-alone objects. This indicates that they were splashed out of chondrules when these were still partially molten. CaO-rich refractory forsterites, which are restricted to $Delta^{17}O < -4permil$ likely escaped equilibration at lower temperatures because of their large size and possibly quicker quenching. The IOG thus bear witness to frequent collisions in the chondrule-forming regions.
We measured 3-micron reflectance spectra of 21 meteorites that represent all carbonaceous chondrite types available in terrestrial meteorite collections. The measurements were conducted at the Laboratory for Spectroscopy under Planetary Environmental Conditions (LabSPEC) at the Johns Hopkins University Applied Physics Laboratory (JHU APL) under vacuum and thermally-desiccated conditions (asteroid-like conditions). This is the most comprehensive 3-micron dataset of carbonaceous chondrites ever acquired in environments similar to the ones experienced by asteroids. The 3-micron reflectance spectra are extremely important for direct comparisons with and appropriate interpretations of reflectance data from ground-based telescopic and spacecraft observations of asteroids. We found good agreement between 3-{mu}m spectral characteristics of carbonaceous chondrites and carbonaceous chondrite classifications. The 3-{mu}m band is diverse, indicative of varying composition, thus suggesting that these carbonaceous chondrites experienced distinct parent body aqueous alteration and metamorphism environments.
The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processe s. We study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R- and I-band and with IRDIS in Y- and J-band. The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large aggregate dust grains in the disk surface. Part of the the non-azimuthal polarization signal in the Uphi image of the J-band observation could be the result of multiple scattering in the disk. The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا