ﻻ يوجد ملخص باللغة العربية
The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. We study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R- and I-band and with IRDIS in Y- and J-band. The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large aggregate dust grains in the disk surface. Part of the the non-azimuthal polarization signal in the Uphi image of the J-band observation could be the result of multiple scattering in the disk. The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions.
We search for signs of ongoing planet-disk interaction and study the distribution of small grains at the surface of the transition disk around RXJ1615.3-3255 (RX J1615). We observed RXJ1615 with VLT/SPHERE. We image the disk for the first time in sca
HD 135344B is an accreting (pre-) transition disk that displays the emission of warm CO extending tens of AU inside its 30 AU dust cavity. We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structur
The search for young planets had its first breakthrough with the detection of the accreting planet PDS70b. In this study, we aim to broaden our understanding towards the formation of multi-planet systems such as HR8799 or the Solar System. Our previo
We present the first optical (590--890 nm) imaging polarimetry observations of the pre-transitional protoplanetary disk around the young solar analog LkCa 15, addressing a number of open questions raised by previous studies. We detect the previously
Understanding the diversity of planets requires to study the morphology and the physical conditions in the protoplanetary disks in which they form. We observed and spatially resolved the disk around the ~10 Myr old protoplanetary disk HD 100453 in po