ﻻ يوجد ملخص باللغة العربية
Background-Foreground classification is a well-studied problem in computer vision. Due to the pixel-wise nature of modeling and processing in the algorithm, it is usually difficult to satisfy real-time constraints. There is a trade-off between the speed (because of model complexity) and accuracy. Inspired by the rejection cascade of Viola-Jones classifier, we decompose the Gaussian Mixture Model (GMM) into an adaptive cascade of Gaussians(CoG). We achieve a good improvement in speed without compromising the accuracy with respect to the baseline GMM model. We demonstrate a speed-up factor of 4-5x and 17 percent average improvement in accuracy over Wallflowers surveillance datasets. The CoG is then demonstrated to over the latent space representation of images of a convolutional variational autoencoder(VAE). We provide initial results over CDW-2014 dataset, which could speed up background subtraction for deep architectures.
We present a machine learning-based approach to lossy image compression which outperforms all existing codecs, while running in real-time. Our algorithm typically produces files 2.5 times smaller than JPEG and JPEG 2000, 2 times smaller than WebP,
Real-time marker-less hand tracking is of increasing importance in human-computer interaction. Robust and accurate tracking of arbitrary hand motion is a challenging problem due to the many degrees of freedom, frequent self-occlusions, fast motions,
Video enhancement is a challenging problem, more than that of stills, mainly due to high computational cost, larger data volumes and the difficulty of achieving consistency in the spatio-temporal domain. In practice, these challenges are often couple
Autonomous vehicles (AVs) can achieve the desired results within a short duration by offloading tasks even requiring high computational power (e.g., object detection (OD)) to edge clouds. However, although edge clouds are exploited, real-time OD cann
Monte Carlo (MC) methods have become very popular in signal processing during the past decades. The adaptive rejection sampling (ARS) algorithms are well-known MC technique which draw efficiently independent samples from univariate target densities.