ﻻ يوجد ملخص باللغة العربية
We investigate the application of amplitude-shaped control pulses for enhancing the time and frequency resolution of multipulse quantum sensing sequences. Using the electronic spin of a single nitrogen vacancy center in diamond and up to 10,000 coherent microwave pulses with a cosine square envelope, we demonstrate 0.6 ps timing resolution for the interpulse delay. This represents a refinement by over 3 orders of magnitude compared to the 2 ns hardware sampling. We apply the method for the detection of external AC magnetic fields and nuclear magnetic resonance signals of carbon-13 spins with high spectral resolution. Our method is simple to implement and especially useful for quantum applications that require fast phase gates, many control pulses, and high fidelity.
The nitrogen vacancy (NV) color center in diamond is an enormously important platform for the development of quantum sensors, including for single spin and single molecule NMR. Detection of weak single-spin signals is greatly enhanced by repeated seq
Quantum sensing takes advantage of well controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe
High fidelity quantum control over qubits is of crucial importance for realistic quantum computing, and it turns to be more challenging when there are inevitable interactions among qubits. By employing a bandselective shaped pulse, we demonstrate a h
We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Re
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in