ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution quantum sensing with shaped control pulses

104   0   0.0 ( 0 )
 نشر من قبل Christian Degen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the application of amplitude-shaped control pulses for enhancing the time and frequency resolution of multipulse quantum sensing sequences. Using the electronic spin of a single nitrogen vacancy center in diamond and up to 10,000 coherent microwave pulses with a cosine square envelope, we demonstrate 0.6 ps timing resolution for the interpulse delay. This represents a refinement by over 3 orders of magnitude compared to the 2 ns hardware sampling. We apply the method for the detection of external AC magnetic fields and nuclear magnetic resonance signals of carbon-13 spins with high spectral resolution. Our method is simple to implement and especially useful for quantum applications that require fast phase gates, many control pulses, and high fidelity.



قيم البحث

اقرأ أيضاً

The nitrogen vacancy (NV) color center in diamond is an enormously important platform for the development of quantum sensors, including for single spin and single molecule NMR. Detection of weak single-spin signals is greatly enhanced by repeated seq uences of microwave pulses; in these dynamical decoupling (DD) techniques, the key control parameters swept in the experiment are the time intervals, $tau$, between pulses. Here we show that, in fact, the pulse duration offers a powerful additional control parameter. While previously, a non-negligible pulse-width has been considered simply a source of experimental error, here we elucidate the underlying quantum dynamics: we identify a landscape of quantum-state crossings which are usually closed (inactive) but may be controllably activated (opened) by adjusting the pulse-width from zero. We identify these crossings with recently observed but unexpected dips (so called spurious dips) seen in the quantum coherence of the NV spin. With this new understanding, both the position and strength of these sharp features may be accurately controlled; they co-exist with the usual broader coherence dips of short-duration microwave pulses, but their sharpness allows for higher resolution spectroscopy with quantum diamond sensors, or their analogues.
Quantum sensing takes advantage of well controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 uHz over a MHz bandwidth. The continuous sampling further guarantees an excellent sensitivity, reaching a signal-to-noise ratio in excess of 10,000:1 for a 170 nT test signal measured during a one-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.
High fidelity quantum control over qubits is of crucial importance for realistic quantum computing, and it turns to be more challenging when there are inevitable interactions among qubits. By employing a bandselective shaped pulse, we demonstrate a h igh fidelity flip over electron spin of nitrogen-vacancy (NV) centers in diamond. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect among a sharply edged region (in frequency domain). So the three sub-levels of host $^{14}N$ nuclear spin can be flipped accurately at the same time, while the redundant flip of other sublevels (e. g. of a nearby $^{13}C$ nuclear spin ) is well suppressed. The shaped pulse can be applied to a large amount of quantum systems in which band-selective operation are required.
We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Re moval by Adiabatic Gate (DRAG) pulses that reduce excitation of primary leakage states and an analytical method of finding the optimal Rydberg blockade we generate Bell states with a fidelity of $F>0.9999$ in a 300 K environment for a gate time of only $50;{rm ns}$, which is an order of magnitude faster than previous protocols. These results establish the potential of neutral atom qubits with Rydberg blockade gates for scalable quantum computation.
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in principle, approach a few nanometers. The selectivity is enabled by the nonlinear atomic response, under the conditions of Electromagnetically Induced Transparency, to a control beam with intensity vanishing at a certain location. Practical performance of this technique and its potential applications to quantum information science with cold atoms, ions, and solid-state qubits are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا