ﻻ يوجد ملخص باللغة العربية
The nitrogen vacancy (NV) color center in diamond is an enormously important platform for the development of quantum sensors, including for single spin and single molecule NMR. Detection of weak single-spin signals is greatly enhanced by repeated sequences of microwave pulses; in these dynamical decoupling (DD) techniques, the key control parameters swept in the experiment are the time intervals, $tau$, between pulses. Here we show that, in fact, the pulse duration offers a powerful additional control parameter. While previously, a non-negligible pulse-width has been considered simply a source of experimental error, here we elucidate the underlying quantum dynamics: we identify a landscape of quantum-state crossings which are usually closed (inactive) but may be controllably activated (opened) by adjusting the pulse-width from zero. We identify these crossings with recently observed but unexpected dips (so called spurious dips) seen in the quantum coherence of the NV spin. With this new understanding, both the position and strength of these sharp features may be accurately controlled; they co-exist with the usual broader coherence dips of short-duration microwave pulses, but their sharpness allows for higher resolution spectroscopy with quantum diamond sensors, or their analogues.
We investigate the application of amplitude-shaped control pulses for enhancing the time and frequency resolution of multipulse quantum sensing sequences. Using the electronic spin of a single nitrogen vacancy center in diamond and up to 10,000 coher
The realisation of optically detected magnetic resonance via nitrogen vacancy centers in diamond faces challenges at high magnetic fields which include growing energy consumption of control pulses as well as decreasing sensitivities. Here we address
The theory of stimulated Raman adiabatic passage in a three-level Lambda-scheme of the interaction of an atom or molecule with light, which takes the nonadiabatic processes at the beginning and the end of light pulses into account, is developed.
Quantum sensing takes advantage of well controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe
Quantum resources can enhance the sensitivity of a device beyond the classical shot noise limit and, as a result, revolutionize the field of metrology through the development of quantum-enhanced sensors. In particular, plasmonic sensors, which are wi