ﻻ يوجد ملخص باللغة العربية
The anomalous metallic state in high-temperature superconducting cuprates is masked by the onset of superconductivity near a quantum critical point. Use of high magnetic fields to suppress superconductivity has enabled a detailed study of the ground state in these systems. Yet, the direct effect of strong magnetic fields on the metallic behavior at low temperatures is poorly understood, especially near critical doping, $x=0.19$. Here we report a high-field magnetoresistance study of thin films of LSCO cuprates in close vicinity to critical doping, $0.161leq xleq0.190$. We find that the metallic state exposed by suppressing superconductivity is characterized by a magnetoresistance that is linear in magnetic field up to the highest measured fields of $80$T. The slope of the linear-in-field resistivity is temperature-independent at very high fields. It mirrors the magnitude and doping evolution of the linear-in-temperature resistivity that has been ascribed to Planckian dissipation near a quantum critical point. This establishes true scale-invariant conductivity as the signature of the strange metal state in the high-temperature superconducting cuprates.
We report the observation of a linear magnetoresistance in single crystals and epitaxial thin films of the pyrochlore iridate Bi$_2$Ir$_2$O$_7$. The linear magnetoresistance is positive and isotropic at low temperatures, without any sign of saturatio
We study optimally doped Bi$_{2}$Sr$_{2}$Ca$_{0.92}$Y$_{0.08}$Cu$_{2}$O$_{8+delta}$ (Bi2212) using angle-resolved two-photon photoemission spectroscopy. Three spectral features are resolved near 1.5, 2.7, and 3.6 eV above the Fermi level. By tuning t
Spontaneous symmetry breaking constitutes a paradigmatic classification scheme of matter. However, broken symmetry also entails domain degeneracy that often impedes identification of novel low symmetry states. In quantum matter, this is additionally
The electronic properties of cuprate high temperature superconductors in their normal state are very two-dimensional: while transport in the ab plane is perfectly metallic, it is insulating along the c-axis, with ratios between the two exceeding 10^4
The recent discovery of a nonsaturating linear magnetoresistance in several correlated electron systems near a quantum critical point has revealed an interesting interplay between the linear magnetoresistance and the zero-field linear-in-temperature