ﻻ يوجد ملخص باللغة العربية
The recent discovery of a nonsaturating linear magnetoresistance in several correlated electron systems near a quantum critical point has revealed an interesting interplay between the linear magnetoresistance and the zero-field linear-in-temperature resistivity. These studies suggest a possible role of quantum criticality on the observed linear magnetoresistance. Here, we report our discovery of a nonsaturating, linear magnetoresistance in Mo$_8$Ga$_{41}$, a nearly isotropic strong electron-phonon coupling superconductor with a linear-in-temperature resistivity from the transition temperature to $sim$55 K. The growth of the resistivity in field is comparable to that in temperature, provided that both quantities are measured in the energy unit. Our datasets are remarkably similar to magnetoresistance data of the optimally doped La$_{2-x}$Sr$_x$CuO$_4$, despite the clearly different crystal and electronic structures, and the apparent absence of quantum critical physics in Mo$_8$Ga$_{41}$. A new empirical scaling formula is developed, which is able to capture the key features of the low-temperature magnetoresistance data of Mo$_8$Ga$_{41}$, as well as the data of La$_{2-x}$Sr$_x$CuO$_4$.
We study a novel type of coupling between spin and orbital degrees of freedom which appears at triplet superconductor-ferromagnet interfaces. Using a self-consistent spatially-dependent mean-field theory, we show that increasing the angle between the
In order to discuss superconductivity in orbital degenerate systems, a microscopic Hamiltonian is introduced. Based on the degenerate model, a strong-coupling theory of superconductivity is developed within the fluctuation exchange (FLEX) approximati
The tunneling spectra of the electron-doped cuprate Pr_2-xCe_xCuO4 as a function of doping and temperature is reported. We find that the superconducting gap, delta, shows a BCS-like temperature dependence even for extremely low carrier concentrations
Anomalous metallic behavior, marked by a saturating finite resistivity much lower than the Drude estimate, has been observed in a wide range of two-dimensional superconductors. Utilizing the electrostatically gated LaAlO3/SrTiO3 interface as a versat
We consider the evolution of d-wave pairing, mediated by nearly critical spin fluctuations, with the coupling strength. We show that the onset temperature for pairing, T*, smoothly evolves between weak and strong coupling, passing through a broad max