ﻻ يوجد ملخص باللغة العربية
License-assisted access (LAA) is a promising technology to offload dramatically increasing cellular traffic to unlicensed bands. Challenges arise from the provision of quality-of-service (QoS) and the quantification of capacity, due to the distributed and heterogeneous nature of LAA and legacy systems (such as WiFi) coexisting in the bands. In this paper, we develop new theories of the effective capacity to measure LAA under statistical QoS requirements. A new four-state semi-Markovian model is developed to capture transmission collisions, random backoffs, and lossy wireless channels of LAA in distributed heterogeneous network environments. A closed-form expression for the effective capacity is derived to comprehensively analyze LAA. The four-state model is further abstracted to an insightful two-state equivalent which reveals the concavity of the effective capacity in terms of transmit rate. Validated by simulations, the concavity is exploited to maximize the effective capacity and effective energy efficiency of LAA, and provide significant improvements of 62.7% and 171.4%, respectively, over existing approaches. Our results are of practical value to holistic designs and deployments of LAA systems.
In future networks, an operator may employ a wide range of access points using diverse radio access technologies (RATs) over multiple licensed and unlicensed frequency bands. This paper studies centralized user association and spectrum allocation acr
The evolution of conventional wireless communication networks to the fifth generation (5G) is driven by an explosive increase in the number of wireless mobile devices and services, as well as their demand for all-time and everywhere connectivity, hig
The unlicensed spectrum is recently considered one of the defining solutions to meet the steadily growing traffic demand. This, in turn, has led to the enhancement for LTE in Release-13 to enable Licensed-Assisted Access (LAA) operations. The design
The 3rd Generation Partnership Project (3GPP) recently started standardizing the Licensed-Assisted Access using LTE for small cells, referred to as Dual Band Femtocell (DBF) in this paper, which uses LTE air interface in both licensed and unlicensed
This work focuses on the performance analysis of short blocklength communication with application in smart grids. We use stochastic geometry to compute in closed form the success probability of a typical message transmission as a function of its size