ﻻ يوجد ملخص باللغة العربية
The 3rd Generation Partnership Project (3GPP) recently started standardizing the Licensed-Assisted Access using LTE for small cells, referred to as Dual Band Femtocell (DBF) in this paper, which uses LTE air interface in both licensed and unlicensed bands based on the Long Term Evolution (LTE) carrier aggregation feature. Alternatively, the Small Cell Forum introduced the Integrated Femto-WiFi (IFW) small cell which simultaneously accesses both the licensed band (via cellular interface) and the unlicensed band (via WiFi interface). In this paper, a practical algorithm for IFW and DBF to automatically balance their traffic in licensed and unlicensed bands, based on the real-time channel, interference and traffic conditions of both bands is described. The algorithm considers the fact that some smart devices (sDevices) have both cellular and WiFi radios while some WiFi-only devices (wDevices) may only have WiFi radio. In addition, the algorithm considers a realistic scenario where a single small cell user may simultaneously use multiple sDevices and wDevices via either the IFW, or the DBF in conjunction with a Wireless Local Area Network (WLAN). The goal is to maximize the total user satisfaction/utility of the small cell user, while keeping the interference from small cell to macrocell below predefined thresholds. The algorithm can be implemented at the Radio Link Control (RLC) or the network layer of the IFW and DBF small cell base stations. Results demonstrate that the proposed traffic-balancing algorithm applied to either IFW or DBF significantly increases sum utility of all macrocell and small cell users, compared with the current practices. Finally, various implementation issues of IFW and DBF are addressed.
In future networks, an operator may employ a wide range of access points using diverse radio access technologies (RATs) over multiple licensed and unlicensed frequency bands. This paper studies centralized user association and spectrum allocation acr
Small cells deployed in licensed spectrum and unlicensed access via WiFi provide different ways of expanding wireless services to low mobility users. That reduces the demand for conventional macro-cellular networks, which are better suited for wide-a
License-assisted access (LAA) is a promising technology to offload dramatically increasing cellular traffic to unlicensed bands. Challenges arise from the provision of quality-of-service (QoS) and the quantification of capacity, due to the distribute
In this paper, two modulation schemes based on complementary sequences (CSs) are proposed for uplink control channels in unlicensed bands. These schemes address high peak-to-average-power ratio (PAPR) under non-contiguous resource allocation in the f
Three dimensional (3D) resource reuse is an important design requirement for the prospective 6G wireless communication systems. Hence, we propose a cooperative 3D beamformer for use in 3D space. Explicitly, we harness multiple base station antennas f