ترغب بنشر مسار تعليمي؟ اضغط هنا

Horofunction Compactifications of Symmetric Spaces

110   0   0.0 ( 0 )
 نشر من قبل Anna-Sofie Schilling
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider horofunction compactifications of symmetric spaces with respect to invariant Finsler metrics. We show that any (generalized) Satake compactification can be realized as a horofunction compactification with respect to a polyhedral Finsler metric.



قيم البحث

اقرأ أيضاً

151 - David Fisher , Kevin Whyte 2014
We prove a rigidity theorem that shows that, under many circumstances, quasi-isometric embeddings of equal rank, higher rank symmetric spaces are close to isometric embeddings. We also produce some surprising examples of quasi-isometric embeddings of higher rank symmetric spaces. In particular, we produce embeddings of $SL(n,mathbb R)$ into $Sp(2(n-1),mathbb R)$ when no isometric embeddings exist. A key ingredient in our proofs of rigidity results is a direct generalization of the Mostow-Morse Lemma in higher rank. Typically this lemma is replaced by the quasi-flat theorem which says that maximal quasi-flat is within bounded distance of a finite union of flats. We improve this by showing that the quasi-flat is in fact flat off of a subset of codimension $2$.
An involutive diffeomorphism $sigma$ of a connected smooth manifold $M$ is called dissecting if the complement of its fixed point set is not connected. Dissecting involutions on a complete Riemannian manifold are closely related to constructive quant um field theory through the work of Dimock and Jaffe/Ritter on the construction of reflection positive Hilbert spaces. In this article we classify all pairs $(M,sigma)$, where $M$ is an irreducible symmetric space, not necessarily Riemannian, and $sigma$ is a dissecting involutive automorphism. In particular, we show that the only irreducible $1$-connected Riemannian symmetric spaces are $S^n$ and $H^n$ with dissecting isometric involutions whose fixed point spaces are $S^{n-1}$ and $H^{n-1}$, respectively.
452 - Alexander Lytchak 2012
We prove that a polar foliation of codimension at least three in an irreducible compact symmetric space is hyperpolar, unless the symmetric space has rank one. For reducible symmetric spaces of compact type, we derive decomposition results for polar foliations.
149 - Cornelia Drutu 2008
We explain how the Transference Principles from Diophantine approximation can be interpreted in terms of geometry of the locally symmetric spaces $T_n=SO(n) backslash SL(n,R) /SL(n,Z)$ with $n>1$, and how, via this dictionary, they become transparent geometric remarks and can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally geodesic ray in a space $T_n$ and the way this family is approximated is reflected by the heights at which the ray rises in the cuspidal end. The only difference between the two types of approximation appearing in a Transference Theorem is that the height is measured with respect to different rays in $W$, a Weyl chamber in $T_n$. Thus the Transference Theorem is equivalent to a relation between the Busemann functions of two rays in $W$. This relation is easy to establish on $W$, because restricted to it the two Busemann functions become two linear forms. Since $T_n$ is at finite Hausdorff distance from $W$, the same relation is satisfied up to a bounded perturbation on the whole of $T_n$.
We define virtual immersions, as a generalization of isometric immersions in a pseudo-Riemannian vector space. We show that virtual immersions possess a second fundamental form, which is in general not symmetric. We prove that a manifold admits a vir tual immersion with skew symmetric second fundamental form, if and only if it is a symmetric space, and in this case the virtual immersion is essentially unique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا