ﻻ يوجد ملخص باللغة العربية
We explain how the Transference Principles from Diophantine approximation can be interpreted in terms of geometry of the locally symmetric spaces $T_n=SO(n) backslash SL(n,R) /SL(n,Z)$ with $n>1$, and how, via this dictionary, they become transparent geometric remarks and can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally geodesic ray in a space $T_n$ and the way this family is approximated is reflected by the heights at which the ray rises in the cuspidal end. The only difference between the two types of approximation appearing in a Transference Theorem is that the height is measured with respect to different rays in $W$, a Weyl chamber in $T_n$. Thus the Transference Theorem is equivalent to a relation between the Busemann functions of two rays in $W$. This relation is easy to establish on $W$, because restricted to it the two Busemann functions become two linear forms. Since $T_n$ is at finite Hausdorff distance from $W$, the same relation is satisfied up to a bounded perturbation on the whole of $T_n$.
In this paper, we classify three-locally-symmetric spaces for a connected, compact and simple Lie group. Furthermore, we give the classification of invariant Einstein metrics on these spaces.
The systole of a closed Riemannian manifold is the minimal length of a non-contractible closed loop. We give a uniform lower bound for the systole for large classes of simple arithmetic locally symmetric orbifolds. We establish new bounds for the tra
We examine the local geometry of affine surfaces which are locally symmetric. There are 6 non-isomorphic local geometries. We realize these examples as Type A, Type B, and Type C geometries using a result of Opozda and classify the relevant geometrie
An involutive diffeomorphism $sigma$ of a connected smooth manifold $M$ is called dissecting if the complement of its fixed point set is not connected. Dissecting involutions on a complete Riemannian manifold are closely related to constructive quant
We prove that a polar foliation of codimension at least three in an irreducible compact symmetric space is hyperpolar, unless the symmetric space has rank one. For reducible symmetric spaces of compact type, we derive decomposition results for polar foliations.