ﻻ يوجد ملخص باللغة العربية
We investigate the real-time evolution of quarkonium bound states in a quark-gluon plasma in one dimension using an improved QCD based stochastic potential model. This model describes the quarkonium dynamics in terms of a Schrodinger equation with an in-medium potential and two noise terms encoding the residual interactions between the heavy quarks and the medium. The probabilities of bound states in a static medium and in a boost-invariantly expanding quark-gluon plasma are discussed. We draw two conclusions from our results: One is that the outcome of the stochastic potential model is qualitatively consistent with the experimental data in relativistic heavy-ion collisions. The other is that the noise plays an important role in order to describe quarkonium dynamics in medium, in particular it causes decoherence of the quarkonium wave function. The effectiveness of decoherence is controlled by a new length scale $l_{rm corr}$. It represents the noise correlation length and its effect has not been included in existing phenomenological studies.
The light-front wave functions of hadrons allow us to calculate a wide range of physical observables; however, the wave functions themselves cannot be measured. We discuss recent results for quarkonia obtained in basis light-front quantization using
We have investigated the effects of strong magnetic field on the properties of quarkonia immersed in a thermal medium of quarks and gluons and studied its quasi-free dissociation due to the Landau-damping. Thermalizing the Schwinger propagator in the
We present theoretical approaches to high energy nuclear collisions in detail putting a special emphasis on technical aspects of numerical simulations. Models include relativistic hydrodynamics, Monte-Carlo implementation of k_T-factorization formula
We discuss the effect of changes in meson properties in a nuclear medium on physical observables, notably, $J/Psi$ dissociation on pion and $rho$ meson comovers in relativistic heavy ion collisions, and the prediction of the $omega$-, $eta$- and $eta$-nuclear bound states.
We project onto the light-front the pions Poincare-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCDs Dyson-Schwinger equations. At an hadronic scale both computed results are concave and signif