ﻻ يوجد ملخص باللغة العربية
We project onto the light-front the pions Poincare-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCDs Dyson-Schwinger equations. At an hadronic scale both computed results are concave and significantly broader than the asymptotic distribution amplitude, phi_pi^{asy}(x)=6 x(1-x); e.g., the integral of phi_pi(x)/phi_pi^{asy}(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral symmetry breaking is responsible for hardening the amplitude.
We extend earlier studies of transverse Ward-Fradkin-Green-Takahashi identities in QED, their usefulness to constrain the transverse fermion-boson vertex and their importance for multiplicative renormalizability, to the equivalent gauge identities in
The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal dynamics with its chiral limit protected by the superconformal algebraic structure which governs its transverse dynamics. The scale in the longitudinal ligh
We present an analytically solvable 3D light-front Hamiltonian model for hadrons that extends light-front holography by including finite mass quarks and a longitudinal confinement term. We propose that the model is suitable as an improved analytic ap
The spontaneous breaking of chiral symmetry is examined by chiral effective theories, such as the linear sigma model and the Nambu Jona-Lasinio (NJL) model. Indicating that sufficiently large contribution of the UA(1) anomaly can break chiral symmetr
The light-front wave functions of hadrons allow us to calculate a wide range of physical observables; however, the wave functions themselves cannot be measured. We discuss recent results for quarkonia obtained in basis light-front quantization using