ﻻ يوجد ملخص باللغة العربية
This paper describes the Duluth systems that participated in Task 14 of SemEval 2016, Semantic Taxonomy Enrichment. There were three related systems in the formal evaluation which are discussed here, along with numerous post--evaluation runs. All of these systems identified synonyms between WordNet and other dictionaries by measuring the gloss overlaps between them. These systems perform better than the random baseline and one post--evaluation variation was within a respectable margin of the median result attained by all participating systems.
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built c
This paper describes the participation of the team TwiSE in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely Sentiment Analysis in Twitter for which we implemented sentiment classification systems for subtasks A, B, C and D
This paper describes the Duluth UROP systems that participated in SemEval--2018 Task 2, Multilingual Emoji Prediction. We relied on a variety of ensembles made up of classifiers using Naive Bayes, Logistic Regression, and Random Forests. We used unig
This paper describes the Duluth systems that participated in SemEval-2017 Task 7 : Detection and Interpretation of English Puns. The Duluth systems participated in all three subtasks, and relied on methods that included word sense disambiguation and measures of semantic relatedness.
In this paper, we describe our system for Task 4 of SemEval 2020, which involves differentiating between natural language statements that confirm to common sense and those that do not. The organizers propose three subtasks - first, selecting between