ترغب بنشر مسار تعليمي؟ اضغط هنا

Duluth at SemEval--2016 Task 14 : Extending Gloss Overlaps to Enrich Semantic Taxonomies

103   0   0.0 ( 0 )
 نشر من قبل Ted Pedersen
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Ted Pedersen




اسأل ChatGPT حول البحث

This paper describes the Duluth systems that participated in Task 14 of SemEval 2016, Semantic Taxonomy Enrichment. There were three related systems in the formal evaluation which are discussed here, along with numerous post--evaluation runs. All of these systems identified synonyms between WordNet and other dictionaries by measuring the gloss overlaps between them. These systems perform better than the random baseline and one post--evaluation variation was within a respectable margin of the median result attained by all participating systems.



قيم البحث

اقرأ أيضاً

187 - Ted Pedersen 2020
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built c lassifiers from lexical features found in manually labeled training data. However, our most successful system for classifying a tweet as offensive (or not) was a rule-based black--list approach, and we also experimented with combining the training data from two different but related SemEval tasks. Our best systems in each of the three OffensEval tasks placed in the middle of the comparative evaluation, ranking 57th of 103 in task A, 39th of 75 in task B, and 44th of 65 in task C.
This paper describes the participation of the team TwiSE in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely Sentiment Analysis in Twitter for which we implemented sentiment classification systems for subtasks A, B, C and D . Our approach consists of two steps. In the first step, we generate and validate diverse feature sets for twitter sentiment evaluation, inspired by the work of participants of previous editions of such challenges. In the second step, we focus on the optimization of the evaluation measures of the different subtasks. To this end, we examine different learning strategies by validating them on the data provided by the task organisers. For our final submissions we used an ensemble learning approach (stacked generalization) for Subtask A and single linear models for the rest of the subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14 for subtasks A, B, C and D respectively.footnote{We make the code available for research purposes at url{https://github.com/balikasg/SemEval2016-Twitter_Sentiment_Evaluation}.}
113 - Shuning Jin , Ted Pedersen 2018
This paper describes the Duluth UROP systems that participated in SemEval--2018 Task 2, Multilingual Emoji Prediction. We relied on a variety of ensembles made up of classifiers using Naive Bayes, Logistic Regression, and Random Forests. We used unig ram and bigram features and tried to offset the skewness of the data through the use of oversampling. Our task evaluation results place us 19th of 48 systems in the English evaluation, and 5th of 21 in the Spanish. After the evaluation we realized that some simple changes to preprocessing could significantly improve our results. After making these changes we attained results that would have placed us sixth in the English evaluation, and second in the Spanish.
68 - Ted Pedersen 2017
This paper describes the Duluth systems that participated in SemEval-2017 Task 7 : Detection and Interpretation of English Puns. The Duluth systems participated in all three subtasks, and relied on methods that included word sense disambiguation and measures of semantic relatedness.
In this paper, we describe our system for Task 4 of SemEval 2020, which involves differentiating between natural language statements that confirm to common sense and those that do not. The organizers propose three subtasks - first, selecting between two sentences, the one which is against common sense. Second, identifying the most crucial reason why a statement does not make sense. Third, generating novel reasons for explaining the against common sense statement. Out of the three subtasks, this paper reports the system description of subtask A and subtask B. This paper proposes a model based on transformer neural network architecture for addressing the subtasks. The novelty in work lies in the architecture design, which handles the logical implication of contradicting statements and simultaneous information extraction from both sentences. We use a parallel instance of transformers, which is responsible for a boost in the performance. We achieved an accuracy of 94.8% in subtask A and 89% in subtask B on the test set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا