ﻻ يوجد ملخص باللغة العربية
One of the main questions in magnetic reconnection is the origin of triggering behavior with on/off properties that accounts, once it is activated, for the fast magnetic energy conversion to kinetic and thermal energies at the heart of explosive events in astrophysical and laboratory plasmas. Over the past decade progress has been made on the initiation of fast reconnection via the plasmoid instability and what has been called ideal tearing, which sets in once current sheets thin to a critical inverse aspect ratio $(a/L)_c$: as shown by Pucci and Velli (2014), at $(a/L)_c sim S^{-1/3}$ the time scale for the instability to develop becomes of the order of the Alfven time and independent of the Lundquist number (here defined in terms of current sheet length $L$). However, given the large values of $S$ in natural plasmas, this transition might occur for thicknesses of the inner resistive singular layer which are comparable to the ion inertial length $d_i$. When this occurs, Hall currents produce a three-dimensional quadrupole structure of magnetic field, and the dispersive waves introduced by the Hall effect accelerate the instability. Here we present a linear study showing how the ideal tearing mode critical aspect ratio is modified when Hall effects are taken into account, including more general scaling laws of the growth rates in terms of sheet inverse aspect ratio: the critical inverse aspect ratio is amended to $a/L simeq (di/L)^ {0.29} (1/S)^{0.19}$, at which point the instability growth rate becomes Alfvenic and does not depend on either of the (small) parameters $d_i/L, 1/S$. We discuss the implications of this generalized triggering aspect ratio for recently developed phase diagrams of magnetic reconnection.
Magnetic reconnection is thought to be the dynamical mechanism underlying many explosive phenomena observed both in space and in the laboratory, though the question of how fast magnetic reconnection is triggered in such high Lundquist ($S$) number pl
We study, by means of MHD simulations, the onset and evolution of fast reconnection via the ideal tearing mode within a collapsing current sheet at high Lundquist numbers ($Sgg10^4$). We first confirm that as the collapse proceeds, fast reconnection
This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a
Works of D. Tsiklauri, T. Haruki, Phys. of Plasmas, 15, 102902 (2008) and D. Tsiklauri and T. Haruki, Phys. of Plasmas, 14, 112905, (2007) are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection duri
Magnetic reconnection, a fundamentally important process in many aspects of astrophysics, is believed to be initiated by the tearing instability of an electric current sheet, a region where magnetic field abruptly changes direction and electric curre