ﻻ يوجد ملخص باللغة العربية
This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfv`en time calculated on the macroscopic scale (Pucci and Velli (2014)). For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio $(d_e/L)^2$ where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor Radius effects are then included and the rescaling argument at the basis of ideal reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.
One of the main questions in magnetic reconnection is the origin of triggering behavior with on/off properties that accounts, once it is activated, for the fast magnetic energy conversion to kinetic and thermal energies at the heart of explosive even
This paper studies the growth rate of reconnection instabilities in thin current sheets in the presence of both resistivity and viscosity. In a previous paper, Pucci and Velli (2014), it was argued that at sufficiently high Lundquist number S it is i
We study, by means of MHD simulations, the onset and evolution of fast reconnection via the ideal tearing mode within a collapsing current sheet at high Lundquist numbers ($Sgg10^4$). We first confirm that as the collapse proceeds, fast reconnection
Magnetic reconnection may be the fundamental process allowing energy stored in magnetic fields to be released abruptly, solar flares and coronal mass ejection (CME) being archetypal natural plasma examples. Magnetic reconnection is much too slow a pr
Within the resistive magnetohydrodynamic model, high-Lundquist number reconnection layers are unstable to the plasmoid instability, leading to a turbulent evolution where the reconnection rate can be independent of the underlying resistivity. However