ﻻ يوجد ملخص باللغة العربية
The celebrated GKYP is widely used in integer-order control system. However, when it comes to the fractional order system, there exists no such tool to solve problems. This paper prove the FGKYP which can be used in the analysis of problems in fractional order system. The $H_infty$ and $L_infty$ of fractional order system are analysed based on the FGKYP.
As an essential characteristics of fractional calculus, the memory effect is served as one of key factors to deal with diverse practical issues, thus has been received extensive attention since it was born. By combining the fractional derivative with
This paper focuses on some properties, which include regularity, impulse, stability, admissibility and robust admissibility, of singular fractional order system (SFOS) with fractional order $1<alpha<2$. The finitions of regularity, impulse-free, stab
The multidimensional ($n$-D) systems described by Roesser model are presented in this paper. These $n$-D systems consist of discrete systems and continuous fractional order systems with fractional order $ u$, $0< u<1$. The stability and Robust stability of such $n$-D systems are investigated.
The well-known GKYP is widely used in system analysis, but for singular systems, especially singular fractional order systems, there is no corresponding theory, for which many control problems for this type of system can not be optimized in the limit
We consider distributed-order non-local fractional optimal control problems with controls taking values on a closed set and prove a strong necessary optimality condition of Pontryagin type. The possibility that admissible controls are subject to poin