ﻻ يوجد ملخص باللغة العربية
We consider distributed-order non-local fractional optimal control problems with controls taking values on a closed set and prove a strong necessary optimality condition of Pontryagin type. The possibility that admissible controls are subject to pointwise constraints is new and requires more sophisticated techniques to include a maximality condition. We start by proving results on continuity of solutions due to needle-like control perturbations. Then, we derive a differentiability result on the state solutions with respect to the perturbed trajectories. We end by stating and proving the Pontryagin maximum principle for distributed-order fractional optimal control problems, illustrating its applicability with an example.
This paper gives a brief contact-geometric account of the Pontryagin maximum principle. We show that key notions in the Pontryagin maximum principle---such as the separating hyperplanes, costate, necessary condition, and normal/abnormal minimizers---
In this paper, the optimal control problem of neutral stochastic functional differential equation (NSFDE) is discussed. A class of so-called neutral backward stochastic functional equations of Volterra type (VNBSFEs) are introduced as the adjoint equ
The COVID-19 pandemic has completely disrupted the operation of our societies. Its elusive transmission process, characterized by an unusually long incubation period, as well as a high contagion capacity, has forced many countries to take quarantine
The paper investigates a new hybrid synchronization called modified hybrid synchronization (MHS) via the active control technique. Using the active control technique, stable controllers which enable the realization of the coexistence of complete sync
In this paper, we study a partially observed progressive optimal control problem of forward-backward stochastic differential equations with random jumps, where the control domain is not necessarily convex, and the control variable enter into all the