ﻻ يوجد ملخص باللغة العربية
This paper introduces a new method of partitioning the solution space of a multi-objective optimisation problem for parallel processing, called Efficient Projection Partitioning. This method projects solutions down into a single dimension, greatly reducing the cost of partitioning the search space. We test EPP on a variety of randomly generated multi-objective combinatorial optimisation problems. The results are compared with the state of the art in parallel partitioning, and we show that in all scenarios tested, our new algorithm performs significantly better. Our proposed method allows the generation of non-dominated sets of larger problems with more decision variables or objective functions through the use of highly parallel computational infrastructure. Source code is provided to allow others to utilise, build upon and improve the algorithm
Exactly solving multi-objective integer programming (MOIP) problems is often a very time consuming process, especially for large and complex problems. Parallel computing has the potential to significantly reduce the time taken to solve such problems,
We have conceived and implemented a multi-objective genetic algorithm (GA) code for the optimisation of an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The algorithm takes as input a series of cost functions (metrics) each describing a
Multi-objective optimization (MOO) is a prevalent challenge for Deep Learning, however, there exists no scalable MOO solution for truly deep neural networks. Prior work either demand optimizing a new network for every point on the Pareto front, or in
Cutting plane methods play a significant role in modern solvers for tackling mixed-integer programming (MIP) problems. Proper selection of cuts would remove infeasible solutions in the early stage, thus largely reducing the computational burden witho
The multi-objective optimization is to optimize several objective functions over a common feasible set. Since the objectives usually do not share a common optimizer, people often consider (weakly) Pareto points. This paper studies multi-objective opt