ﻻ يوجد ملخص باللغة العربية
$^{56}$Ni is an important indicator of the supernova explosions, which characterizes light curves. Nevertheless, rather than $^{56}$Ni, the explosion energy has often been paid attention from the explosion mechanism community, since it is easier to estimate from numerical data than the amount of $^{56}$Ni. The final explosion energy, however, is difficult to estimate by detailed numerical simulations because current simulations cannot reach typical timescale of saturation of explosion energy. Instead, the amount of $^{56}$Ni converges within a short timescale so that it would be a better probe of the explosion mechanism. We investigated the amount of $^{56}$Ni synthesized by explosive nucleosynthesis in supernova ejecta by means of numerical simulations and an analytic model. For numerical simulations, we employ Lagrangian hydrodynamics code in which neutrino heating and cooling terms are taken into account by light-bulb approximation. Initial conditions are taken from Woosley & Hegel (2007), which have 12, 15, 20, and 25 $M_odot$ in zero age main sequence. We additionally develop an analytic model, which gives a reasonable estimate of the amount of $^{56}$Ni. We found that, in order to produce enough amount of $^{56}$Ni, $mathcal{O}(1)$ Bethe s$^{-1}$ of growth rate of the explosion energy is needed, which is much larger than that found in recent exploding simulations, typically $mathcal{O}(0.1)$ Bethe s$^{-1}$.
An attempt is made to assess the significance of rotation in the core-collapse supernova phenomenon, from both observational and theoretical point of view. The data on supernovae particularly indicative of the role of rotation in the collapse-trigger
We have been working within the fundamental paradigm that core collapse supernovae (CCSNe) may be neutrino driven, since the first suggestion of this by Colgate and White nearly five decades ago. Computational models have become increasingly sophisti
Most supernova explosions accompany the death of a massive star. These explosions give birth to neutron stars and black holes and eject solar masses of heavy elements. However, determining the mechanism of explosion has been a half-century journey of
The mass of synthesised radioactive material is an important power source for all supernova (SN) types. Anderson 2019 recently compiled literature values and obtained $^{56}$Ni distributions for different core-collapse supernovae (CC-SNe), showing th
In this work we report briefly on the gravitational wave (GW) signal computed in the context of a self-consistent, 3D simulation of a core-collapse supernova (CCSN) explosion of a 15M$_odot$ progenitor star. We present a short overview of the GW sign