ترغب بنشر مسار تعليمي؟ اضغط هنا

Core-Collapse Supernova Explosion Theory

252   0   0.0 ( 0 )
 نشر من قبل Adam Burrows
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most supernova explosions accompany the death of a massive star. These explosions give birth to neutron stars and black holes and eject solar masses of heavy elements. However, determining the mechanism of explosion has been a half-century journey of great complexity. In this paper, we present our perspective of the status of this theoretical quest and the physics and astrophysics upon which its resolution seems to depend. The delayed neutrino-heating mechanism is emerging as a robust solution, but there remain many issues to address, not the least of which involves the chaos of the dynamics, before victory can unambiguously be declared. It is impossible to review in detail all aspects of this multi-faceted, more-than-half-century-long theoretical quest. Rather, we here map out the major ingredients of explosion and the emerging systematics of the observables with progenitor mass, as we currently see them. Our discussion will of necessity be speculative in parts, and many of the ideas may not survive future scrutiny. Some statements may be viewed as informed predictions concerning the numerous observables that rightly exercise astronomers witnessing and diagnosing the supernova Universe. Importantly, the same explosion in the inside, by the same mechanism, can look very different in photons, depending upon the mass and radius of the star upon explosion. A 10$^{51}$-erg (one Bethe) explosion of a red supergiant with a massive hydrogen-rich envelope, a diminished hydrogen envelope, no hydrogen envelope, and, perhaps, no hydrogen envelope or helium shell all look very different, yet might have the same core and explosion evolution.



قيم البحث

اقرأ أيضاً

We have been working within the fundamental paradigm that core collapse supernovae (CCSNe) may be neutrino driven, since the first suggestion of this by Colgate and White nearly five decades ago. Computational models have become increasingly sophisti cated, first in one spatial dimension assuming spherical symmetry, then in two spatial dimensions assuming axisymmetry, and now in three spatial dimensions with no imposed symmetries. The increase in the number of spatial dimensions has been accompanied by an increase in the physics included in the models, and an increase in the sophistication with which this physics has been modeled. Computation has played an essential role in the development of CCSN theory, not simply for the obvious reason that such multidimensional, multi-physics, nonlinear events cannot possibly be fully captured analytically, but for its role in discovery. In particular, the discovery of the standing accretion shock instability (SASI) through computation about a decade ago has impacted all simulations performed since then. Today, we appear to be at a threshold, where neutrinos, neutrino-driven convection, and the SASI, working together over time scales significantly longer than had been anticipated in the past, are able to generate explosions, and in some cases, robust explosions, in a number of axisymmetric models. But how will this play out in three dimensions? Early results from the first three-dimensional (3D), multi-physics simulation of the Oak Ridge group are promising. I will discuss the essential components of todays models and the requirements of realistic CCSN modeling, present results from our one-, two-, and three-dimensional models, place our models in context with respect to other efforts around the world, and discuss short- and long-term next steps.
We present results from an ab initio three-dimensional, multi-physics core collapse supernova simulation for the case of a 15 M progenitor. Our simulation includes multi-frequency neutrino transport with state-of-the-art neutrino interactions in the ray-by-ray approximation, and approximate general relativity. Our model exhibits a neutrino-driven explosion. The shock radius begins an outward trajectory at approximately 275 ms after bounce, giving the first indication of a developing explosion in the model. The onset of this shock expansion is delayed relative to our two-dimensional counterpart model, which begins at approximately 200 ms after core bounce. At a time of 441 ms after bounce, the angle-averaged shock radius in our three-dimensional model has reached 751 km. Further quantitative analysis of the outcomes in this model must await further development of the post-bounce dynamics and a simulation that will extend well beyond 1 s after stellar core bounce, based on the results for the same progenitor in the context of our two-dimensional, counterpart model. This more complete analysis will determine whether or not the explosion is robust and whether or not observables such as the explosion energy, 56Ni mass, etc. are in agreement with observations. Nonetheless, the onset of explosion in our ab initio three-dimensional multi-physics model with multi-frequency neutrino transport and general relativity is encouraging.
I summarize what we have learned about the nature of stars that ultimately explode as core-collapse supernovae from the examination of images taken prior to the explosion. By registering pre-supernova and post-supernova images, usually taken at high resolution using either space-based optical detectors, or ground-based infrared detectors equipped with laser guide star adaptive optics systems, nearly three dozen core-collapse supernovae have now had the properties of their progenitor stars either directly measured or (more commonly) constrained by establishing upper limits on their luminosities. These studies enable direct comparison with stellar evolution models that, in turn, permit estimates of the progenitor stars physical characteristics to be made. I review progenitor characteristics (or constraints) inferred from this work for each of the major core-collapse supernova types (II-Plateau, II-Linear, IIb, IIn, Ib/c), with a particular focus on the analytical techniques used and the processes through which conclusions have been drawn. Brief discussion of a few individual events is also provided, including SN 2005gl, a type IIn supernova that is shown to have had an extremely luminous -- and thus very massive -- progenitor that exploded shortly after a violent, luminous blue variable-like eruption phase, contrary to standard theoretical predictions.
Observationally, supernovae (SNe) are divided into subclasses pertaining to their distinct characteristics. This diversity reflects the diversity in the progenitor stars. It is not entirely clear how different evolutionary paths leading massive stars to become a SN are governed by fundamental parameters such as progenitor initial mass and metallicity. This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses, through a study of the parent stellar populations at the explosion sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN Ic, followed by type Ib, then types IIb and II. SN IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimate lower than 25~$M_odot$ are found; these are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channel only, and both single and binary channels are at play in the production of core-collapse SNe. [ABRIDGED]
There are now $sim$20 multi-dimensional core-collapse supernova (CCSN) simulations that explode. However, these simulations have explosion energies that are a few times $10^{50}$ erg, not $10^{51}$ erg. In this manuscript, we compare the inferred exp losion energies of these simulations and observations of 38 SN~IIP. Assuming a log-normal distribution, the mean explosion energy for the observations is $mu_{rm obs} = -0.13pm 0.05$ ($log_{10}(E/10^{51}, {rm erg})$) and the width is $sigma_{rm obs} = 0.21^{+0.05}_{-0.04}$. Only three CCSN codes have sufficient simulations to compare with observations: CHIMERA, CoCoNuT-FMT, and FORNAX. Currently, FORNAX has the largest sample of simulations. The two-dimensional FORNAX simulations show a correlation between explosion energy and progenitor mass, ranging from linear to quadratic, $E_{rm sim} propto M^{1-2}$; this correlation is consistent with inferences from observations. In addition, we infer the ratio of the observed-to-simulated explosion energies, $Delta=log_{10}(E_{rm obs}/E_{rm sim})$. For the CHIMERA set, $Delta=0.33pm0.06$; for CoCoNuT-FMT, $Delta=0.62pm0.05$; for FORNAX2D, $Delta=0.73pm0.05$, and for FORNAX3D, $Delta=0.95pm0.06$. On average, the simulations are less energetic than inferred energies from observations ($Delta approx 0.7$), but we also note that the variation among the simulations (max($Delta$)-min($Delta$) $approx 0.6$) is as large as this average offset. This suggests that further improvements to the simulations could resolve the discrepancy. Furthermore, both the simulations and the observations are heavily biased. In this preliminary comparison, we model these biases, but to more reliably compare the explosion energies, we recommend strategies to un-bias both the simulations and observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا