ﻻ يوجد ملخص باللغة العربية
We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so that each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an $ntimes n$ grid of pixels with $k$ centers, the problem can be solved in time $O(n^2 log^5 n)$, and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a $k$-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weight
In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9,18], and tensor clustering [8,34].
This paper presents universal algorithms for clustering problems, including the widely studied $k$-median, $k$-means, and $k$-center objectives. The input is a metric space containing all potential client locations. The algorithm must select $k$ clus
We consider the problem of finding textit{semi-matching} in bipartite graphs which is also extensively studied under various names in the scheduling literature. We give faster algorithms for both weighted and unweighted case. For the weighted case,
Let $A$ and $B$ be two point sets in the plane of sizes $r$ and $n$ respectively (assume $r leq n$), and let $k$ be a parameter. A matching between $A$ and $B$ is a family of pairs in $A times B$ so that any point of $A cup B$ appears in at most one
For over a decade now we have been witnessing the success of {em massive parallel computation} (MPC) frameworks, such as MapReduce, Hadoop, Dryad, or Spark. One of the reasons for their success is the fact that these frameworks are able to accurately