ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximation Algorithms for Bregman Co-clustering and Tensor Clustering

138   0   0.0 ( 0 )
 نشر من قبل Stefanie Jegelka
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9,18], and tensor clustering [8,34]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximation algorithms of varying degrees of sophistication for k-means, k-medians, and more recently also for Bregman clustering [2]. However, there seem to be no approximation algorithms for Bregman co- and tensor clustering. In this paper we derive the first (to our knowledge) guaranteed methods for these increasingly important clustering settings. Going beyond Bregman divergences, we also prove an approximation factor for tensor clustering with arbitrary separable metrics. Through extensive experiments we evaluate the characteristics of our method, and show that it also has practical impact.



قيم البحث

اقرأ أيضاً

We present an $(e^{O(p)} frac{log ell}{loglogell})$-approximation algorithm for socially fair clustering with the $ell_p$-objective. In this problem, we are given a set of points in a metric space. Each point belongs to one (or several) of $ell$ grou ps. The goal is to find a $k$-medians, $k$-means, or, more generally, $ell_p$-clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of $k$ centers $C$ so as to minimize the maximum over all groups $j$ of $sum_{u text{ in group }j} d(u,C)^p$. The socially fair clustering problem was independently proposed by Ghadiri, Samadi, and Vempala [2021] and Abbasi, Bhaskara, and Venkatasubramanian [2021]. Our algorithm improves and generalizes their $O(ell)$-approximation algorithms for the problem. The natural LP relaxation for the problem has an integrality gap of $Omega(ell)$. In order to obtain our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of $Theta(frac{log ell}{loglogell})$ for a fixed $p$. Additionally, we present a bicriteria approximation algorithm, which generalizes the bicriteria approximation of Abbasi et al. [2021].
We consider the $k$-clustering problem with $ell_p$-norm cost, which includes $k$-median, $k$-means and $k$-center cost functions, under an individual notion of fairness proposed by Jung et al. [2020]: given a set of points $P$ of size $n$, a set of $k$ centers induces a fair clustering if for every point $vin P$, $v$ can find a center among its $n/k$ closest neighbors. Recently, Mahabadi and Vakilian [2020] showed how to get a $(p^{O(p)},7)$-bicriteria approximation for the problem of fair $k$-clustering with $ell_p$-norm cost: every point finds a center within distance at most $7$ times its distance to its $(n/k)$-th closest neighbor and the $ell_p$-norm cost of the solution is at most $p^{O(p)}$ times the cost of an optimal fair solution. In this work, for any $varepsilon>0$, we present an improved $(16^p +varepsilon,3)$-bicriteria approximation for the fair $k$-clustering with $ell_p$-norm cost. To achieve our guarantees, we extend the framework of [Charikar et al., 2002, Swamy, 2016] and devise a $16^p$-approximation algorithm for the facility location with $ell_p$-norm cost under matroid constraint which might be of an independent interest. Besides, our approach suggests a reduction from our individually fair clustering to a clustering with a group fairness requirement proposed by Kleindessner et al. [2019], which is essentially the median matroid problem [Krishnaswamy et al., 2011].
We show how to approximate a data matrix $mathbf{A}$ with a much smaller sketch $mathbf{tilde A}$ that can be used to solve a general class of constrained k-rank approximation problems to within $(1+epsilon)$ error. Importantly, this class of problem s includes $k$-means clustering and unconstrained low rank approximation (i.e. principal component analysis). By reducing data points to just $O(k)$ dimensions, our methods generically accelerate any exact, approximate, or heuristic algorithm for these ubiquitous problems. For $k$-means dimensionality reduction, we provide $(1+epsilon)$ relative error results for many common sketching techniques, including random row projection, column selection, and approximate SVD. For approximate principal component analysis, we give a simple alternative to known algorithms that has applications in the streaming setting. Additionally, we extend recent work on column-based matrix reconstruction, giving column subsets that not only `cover a good subspace for $bv{A}$, but can be used directly to compute this subspace. Finally, for $k$-means clustering, we show how to achieve a $(9+epsilon)$ approximation by Johnson-Lindenstrauss projecting data points to just $O(log k/epsilon^2)$ dimensions. This gives the first result that leverages the specific structure of $k$-means to achieve dimension independent of input size and sublinear in $k$.
This paper presents universal algorithms for clustering problems, including the widely studied $k$-median, $k$-means, and $k$-center objectives. The input is a metric space containing all potential client locations. The algorithm must select $k$ clus ter centers such that they are a good solution for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference between the cost of the algorithms solution and that of an optimal solution. A universal algorithms solution $SOL$ for a clustering problem is said to be an $(alpha, beta)$-approximation if for all subsets of clients $C$, it satisfies $SOL(C) leq alpha cdot OPT(C) + beta cdot MR$, where $OPT(C)$ is the cost of the optimal solution for clients $C$ and $MR$ is the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives of $k$-median, $k$-means, and $k$-center that achieve $(O(1), O(1))$-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other $ell_p$-objectives and the setting where some subset of the clients are fixed. We also give hardness results showing that $(alpha, beta)$-approximation is NP-hard if $alpha$ or $beta$ is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, $(O(1), O(1))$-approximation is the strongest type of guarantee obtainable for universal clustering.
Hierarchical clustering is a fundamental task often used to discover meaningful structures in data, such as phylogenetic trees, taxonomies of concepts, subtypes of cancer, and cascades of particle decays in particle physics. Typically approximate alg orithms are used for inference due to the combinatorial number of possible hierarchical clusterings. In contrast to existing methods, we present novel dynamic-programming algorithms for emph{exact} inference in hierarchical clustering based on a novel trellis data structure, and we prove that we can exactly compute the partition function, maximum likelihood hierarchy, and marginal probabilities of sub-hierarchies and clusters. Our algorithms scale in time and space proportional to the powerset of $N$ elements which is super-exponentially more efficient than explicitly considering each of the (2N-3)!! possible hierarchies. Also, for larger datasets where our exact algorithms become infeasible, we introduce an approximate algorithm based on a sparse trellis that compares well to other benchmarks. Exact methods are relevant to data analyses in particle physics and for finding correlations among gene expression in cancer genomics, and we give examples in both areas, where our algorithms outperform greedy and beam search baselines. In addition, we consider Dasguptas cost with synthetic data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا