ﻻ يوجد ملخص باللغة العربية
For every prime $p$, Mohan Kumar constructed examples of stably free modules of rank $p$ on suitable $(p+1)$-dimensional smooth affine varieties. This note discusses how to detect the corresponding unimodular rows in motivic cohomology. Using the recent developments in the $mathbb{A}^1$-obstruction classification of vector bundles, this provides an alternative proof of non-triviality of Mohan Kumars stably free modules. The reinterpretation of Mohan Kumars examples also allows to produce interesting examples of stably trivial torsors for other algebraic groups.
Grothendieck and Harder proved that every principal bundle over the projective line with split reductive structure group (and trivial over the generic point) can be reduced to a maximal torus. Furthermore, this reduction is unique modulo automorphism
Several variants of the classic Fibonacci inflation tiling are considered in an illustrative fashion, in one and in two dimensions, with an eye on changes or robustness of diffraction and dynamical spectra. In one dimension, we consider extension mec
We give a general structure theorem for affine A 1-fibrations on smooth quasi-projective surfaces. As an application, we show that every smooth A 1-fibered affine surface non-isomorphic to the total space of a line bundle over a smooth affine curve f
In this note, we unify and extend various concepts in the area of $G$-complete reducibility, where $G$ is a reductive algebraic group. By results of Serre and Bate--Martin--R{o}hrle, the usual notion of $G$-complete reducibility can be re-framed as a
Schinzel and Wojcik have shown that if $alpha, beta$ are rational numbers not $0$ or $pm 1$, then $mathrm{ord}_p(alpha)=mathrm{ord}_p(beta)$ for infinitely many primes $p$, where $mathrm{ord}_p(cdot)$ denotes the order in $mathbb{F}_p^{times}$. We be