ﻻ يوجد ملخص باللغة العربية
Grothendieck and Harder proved that every principal bundle over the projective line with split reductive structure group (and trivial over the generic point) can be reduced to a maximal torus. Furthermore, this reduction is unique modulo automorphisms and the Weyl group. In a series of six variations on this theme, we prove corresponding results for principal bundles over the following schemes and stacks: (1) a line modulo the group of nth roots of unity; (2) a football, that is, an orbifold of genus zero with two marked points; (3) a gerbe over a football whose structure group is the nth roots of unity; (4) a chain of lines meeting in nodes; (5) a line modulo an action of a split torus; and (6) a chain modulo an action of a split torus. We also prove that the automorphism groups of such bundles are smooth, affine, and connected.
For every prime $p$, Mohan Kumar constructed examples of stably free modules of rank $p$ on suitable $(p+1)$-dimensional smooth affine varieties. This note discusses how to detect the corresponding unimodular rows in motivic cohomology. Using the rec
Several variants of the classic Fibonacci inflation tiling are considered in an illustrative fashion, in one and in two dimensions, with an eye on changes or robustness of diffraction and dynamical spectra. In one dimension, we consider extension mec
In this note, we unify and extend various concepts in the area of $G$-complete reducibility, where $G$ is a reductive algebraic group. By results of Serre and Bate--Martin--R{o}hrle, the usual notion of $G$-complete reducibility can be re-framed as a
Schinzel and Wojcik have shown that if $alpha, beta$ are rational numbers not $0$ or $pm 1$, then $mathrm{ord}_p(alpha)=mathrm{ord}_p(beta)$ for infinitely many primes $p$, where $mathrm{ord}_p(cdot)$ denotes the order in $mathbb{F}_p^{times}$. We be
We present a new approach to the Marcinkiewicz interpolation inequality for the distribution function of the Hilbert transform, and prove an abstract version of this inequality. The approach uses logarithmic determinants and new estimates of canonical products of genus one.