ﻻ يوجد ملخص باللغة العربية
Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the SOFIA 35 um resolved disk image of epsilon Eri, the closest debris disk around a star similar to the early Sun. Combining with the Spitzer resolved image at 24 um and 15-38 um excess spectrum, we examine two proposed origins of the inner debris in epsilon Eri: (1) in-situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in-situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.
We present new high fidelity optical coronagraphic imagery of the inner $sim$50 au of AU Mics edge-on debris disk using the BAR5 occulter of the Hubble Space Telescope Imaging Spectrograph (HST/STIS) obtained on 26-27 July 2018. This new imagery reve
We present imaging observations at 1.3 millimeters of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3 arcsec (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star
We present detailed characterization of the extremely dusty main sequence star TYC 8830 410 1. This system hosts inner planetary system dust (Tdust~300 K) with a fractional infrared luminosity of ~1%. Mid-infrared spectroscopy reveals a strong, mildy
We present observations of Epsilon Eridani from the Submillimeter Array (SMA) at 1.3 millimeters and from the Australia Telescope Compact Array (ATCA) at 7 millimeters that reach an angular resolution of ~4 (13 AU). These first millimeter interferome
We present the results of 14 nights of textit{I}-band photometric monitoring of the nearby brown dwarf binary, $epsilon$ Indi Ba,Bb. Observations were acquired over 2 months, and total close to 42 hours of coverage at a typically high cadence of 1.4