ﻻ يوجد ملخص باللغة العربية
We present observations of Epsilon Eridani from the Submillimeter Array (SMA) at 1.3 millimeters and from the Australia Telescope Compact Array (ATCA) at 7 millimeters that reach an angular resolution of ~4 (13 AU). These first millimeter interferometer observations of Epsilon Eridani, which hosts the closest debris disk to the Sun, reveal two distinct emission components: (1) the well-known outer dust belt, which, although patchy, is clearly resolved in the radial direction, and (2) an unresolved source coincident with the position of the star. We use direct model-fitting of the millimeter visibilities to constrain the basic properties of these two components. A simple Gaussian shape for the outer belt fit to the SMA data results in a radial location of $64.4^{+2.4}_{-3.0}$ AU and FWHM of $20.2^{+6.0}_{-8.2}$ AU (fractional width $Delta R/R = 0.3$. Similar results are obtained taking a power law radial emission profile for the belt, though the power law index cannot be usefully constrained. Within the noise obtained (0.2 mJy/beam), these data are consistent with an axisymmetric belt model and show no significant azimuthal structure that might be introduced by unseen planets in the system. These data also limit any stellocentric offset of the belt to $<9$ AU, which disfavors the presence of giant planets on highly eccentric ($>0.1$) and wide (10s of AU) orbits. The flux density of the unresolved central component exceeds predictions for the stellar photosphere at these long wavelengths, by a marginally significant amount at 1.3 millimeters but by a factor of a few at 7 millimeters (with brightness temperature $13000 pm 1600$ K for a source size of the optical stellar radius). We attribute this excess emission to ionized plasma from a stellar corona or chromosphere.
As part of a wider search for radio emission from nearby systems known or suspected to contain extrasolar planets $epsilon$ Eridani was observed by the Jansky Very Large Array (VLA) in the 2-4 GHz and 4-8 GHz frequency bands. In addition, as part of
The nearby star $rm epsilon Eridani$ has been a frequent target of radio surveys for stellar emission and extraterrestial intelligence. Using deep $rm 2-4 GHz$ observations with the Very Large Array, we have uncovered a $29 mu {rm Jy}$ compact, st
Epsilon Eridani is a nearby, young Sun-like star that hosts a ring of cool debris analogous to the solar systems Edgeworth-Kuiper belt. Early observations at (sub-)mm wavelengths gave tentative evidence of the presence of inhomogeneities in the ring,
We have used the Submillimeter Array (SMA) to make 1.3 millimeter observations of the debris disk surrounding HD 15115, an F-type star with a putative membership in the beta Pictoris moving group. This nearly edge-on debris disk shows an extreme asym
We present imaging observations at 1.3 millimeters of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3 arcsec (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star