ﻻ يوجد ملخص باللغة العربية
Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectra of primordial perturbations after the bounce, the challenge has been to construct completely symmetric bounces that lead to a tensor-to-scalar ratio which is small enough to be consistent with the recent cosmological data. In this work, we construct a model involving two scalar fields (a canonical field and a non-canonical ghost field) to drive the symmetric matter bounce and study the evolution of the scalar perturbations in the model. If we consider the scale associated with the bounce to be of the order of the Planck scale, the model is completely described in terms of only one parameter, viz the value of the scale factor at the bounce. We evolve the scalar perturbations numerically across the bounce and evaluate the scalar power spectra after the bounce. We show that, while the scalar and tensor perturbation spectra are scale invariant over scales of cosmological interest, the tensor-to-scalar ratio proves to be much smaller than the current upper bound from the observations of the cosmic microwave background anisotropies by the Planck mission. We also support our numerical analysis with analytical arguments.
We study the bounce and cyclicity realization in the framework of new gravitational scalar-tensor theories. In these theories the Lagrangian contains the Ricci scalar and its first and second derivatives, in a specific combination that makes them fre
In a recent work, we had constructed a model consisting of two fields---a canonical scalar field and a non-canonical ghost field---that had sourced a symmetric matter bounce scenario. The model had involved only one parameter, viz. the scale associat
The scalar-tensor theory can be formulated in both Jordan and Einstein frames, which are conformally related together with a redefinition of the scalar field. As the solution to the equation of the scalar field in the Jordan frame does not have the o
In this work we shall demonstrate that it is possible to describe in a unified way a primordial bounce with the dark energy era, in the context of Gauss-Bonnet modified gravity. Particularly, the early time bounce has a nearly scale invariant power s
We study the structure of scalar-tensor theories of gravity based on derivative couplings between the scalar and the matter degrees of freedom introduced through an effective metric. Such interactions are classified by their tensor structure into con