ﻻ يوجد ملخص باللغة العربية
We study the structure of scalar-tensor theories of gravity based on derivative couplings between the scalar and the matter degrees of freedom introduced through an effective metric. Such interactions are classified by their tensor structure into conformal (scalar), disformal (vector) and extended disformal (traceless tensor), as well as by the derivative order of the scalar field. Relations limited to first derivatives of the field ensure second order equations of motion in the Einstein frame and hence the absence of Ostrogradski ghost degrees of freedom. The existence of a mapping to the Jordan frame is not trivial in the general case, and can be addressed using the Jacobian of the frame transformation through its eigenvalues and eigentensors. These objects also appear in the study of different aspects of such theories, including the metric and field redefinition transformation of the path integral in the quantum mechanical description. Although sane in the Einstein frame, generic disformally coupled theories are described by higher order equations of motion in the Jordan frame. This apparent contradiction is solved by the use of a hidden constraint: the contraction of the metric equations with a Jacobian eigentensor provides a constraint relation for the higher field derivatives, which allows one to express the dynamical equations in a second order form. This signals a loophole in Horndeskis theorem and allows one to enlarge the set of scalar-tensor theories which are Ostrogradski-stable. The transformed Gauss-Bonnet terms are also discussed for the simplest conformal and disformal relations.
The Horndeski theories are extended into the Lovelock gravity theory. When the canonical scalar field is uniquely kinetically coupled to the Lovelock tensors, it is named after Lovelock scalar field. The Lovelock scalar field model is a subclass of t
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determ
In the bibliography a certain confusion arises in what regards to the classification of the gravitational theories into scalar-tensor theories and general relativity with a scalar field either minimally or non-minimally coupled to matter. Higher-deri
Kinetic mixing between the metric and scalar degrees of freedom is an essential ingredient in contemporary scalar-tensor theories. This often makes hard to understand their physical content, especially when derivative mixing is present, as it is the
In this paper we show that an equivalence between Horndeski and beyond Horndeski theories and general relativity with an effective imperfect fluid can be formally established. The formal equivalence is discussed for several particular cases of intere