ترغب بنشر مسار تعليمي؟ اضغط هنا

Arithmetic statistics of modular symbols

190   0   0.0 ( 0 )
 نشر من قبل Morten S. Risager
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Mazur, Rubin, and Stein have recently formulated a series of conjectures about statistical properties of modular symbols in order to understand central values of twists of elliptic curve $L$-functions. Two of these conjectures relate to the asymptotic growth of the first and second moments of the modular symbols. We prove these on average by using analytic properties of Eisenstein series twisted by modular symbols. Another of their conjectures predicts the Gaussian distribution of normalized modular symbols ordered according to the size of the denominator of the cusps. We prove this conjecture in a refined version that also allows restrictions on the location of the cusps.



قيم البحث

اقرأ أيضاً

This paper consists of variations upon the theme of limiting modular symbols. Topics covered are: an expression of limiting modular symbols as Birkhoff averages on level sets of the Lyapunov exponent of the shift of the continued fraction, a vanishin g theorem depending on the spectral properties of a generalized Gauss-Kuzmin operator, the construction of certain non-trivial homology classes associated to non-closed geodesics on modular curves, certain Selberg zeta functions and C^* algebras related to shift invariant sets.
We provide a new and simple automorphic method using Eisenstein series to study the equidistribution of modular symbols modulo primes, which we apply to prove an average version of a conjecture of Mazur and Rubin. More precisely, we prove that modula r symbols corresponding to a Hecke basis of weight 2 cusp forms are asymptotically jointly equidistributed mod $p$ while we allow restrictions on the location of the cusps. As an application, we obtain a residual equidistribution result for Dedekind sums. Furthermore, we calculate the variance of the distribution and show a surprising bias with connections to perturbation theory. Additionally, we prove the full conjecture in some particular cases using a connection to Eisenstein congruences. Finally, our methods generalise to equidistribution results for cohomology classes of finite volume quotients of $n$-dimensional hyperbolic space.
209 - Yifeng Liu , Yichao Tian 2017
This article has three goals. First, we generalize the result of Deuring and Serre on the characterization of supersingular locus of modular curves to all Shimura varieties given by totally indefinite quaternion algebras over totally real number fiel ds. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura varieties in the inert case. Third, as an application to number theory, we use the previous results to study the Selmer group of certain triple product motive of an elliptic curve, in the context of the Bloch--Kato conjecture.
Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.
We introduce new invariants in equivariant birational geometry and study their relation to modular symbols and cohomology of arithmetic groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا