ترغب بنشر مسار تعليمي؟ اضغط هنا

Residual equidistribution of modular symbols and cohomology classes for quotients of hyperbolic $n$-space

220   0   0.0 ( 0 )
 نشر من قبل Asbjorn Christian Nordentoft
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a new and simple automorphic method using Eisenstein series to study the equidistribution of modular symbols modulo primes, which we apply to prove an average version of a conjecture of Mazur and Rubin. More precisely, we prove that modular symbols corresponding to a Hecke basis of weight 2 cusp forms are asymptotically jointly equidistributed mod $p$ while we allow restrictions on the location of the cusps. As an application, we obtain a residual equidistribution result for Dedekind sums. Furthermore, we calculate the variance of the distribution and show a surprising bias with connections to perturbation theory. Additionally, we prove the full conjecture in some particular cases using a connection to Eisenstein congruences. Finally, our methods generalise to equidistribution results for cohomology classes of finite volume quotients of $n$-dimensional hyperbolic space.



قيم البحث

اقرأ أيضاً

Mazur, Rubin, and Stein have recently formulated a series of conjectures about statistical properties of modular symbols in order to understand central values of twists of elliptic curve $L$-functions. Two of these conjectures relate to the asymptoti c growth of the first and second moments of the modular symbols. We prove these on average by using analytic properties of Eisenstein series twisted by modular symbols. Another of their conjectures predicts the Gaussian distribution of normalized modular symbols ordered according to the size of the denominator of the cusps. We prove this conjecture in a refined version that also allows restrictions on the location of the cusps.
This paper consists of variations upon the theme of limiting modular symbols. Topics covered are: an expression of limiting modular symbols as Birkhoff averages on level sets of the Lyapunov exponent of the shift of the continued fraction, a vanishin g theorem depending on the spectral properties of a generalized Gauss-Kuzmin operator, the construction of certain non-trivial homology classes associated to non-closed geodesics on modular curves, certain Selberg zeta functions and C^* algebras related to shift invariant sets.
123 - Liuquan Wang , Yifan Yang 2020
For a positive integer $N$, let $mathscr C(N)$ be the subgroup of $J_0(N)$ generated by the equivalence classes of cuspidal divisors of degree $0$ and $mathscr C(N)(mathbb Q):=mathscr C(N)cap J_0(N)(mathbb Q)$ be its $mathbb Q$-rational subgroup. Let also $mathscr C_{mathbb Q}(N)$ be the subgroup of $mathscr C(N)(mathbb Q)$ generated by $mathbb Q$-rational cuspidal divisors. We prove that when $N=n^2M$ for some integer $n$ dividing $24$ and some squarefree integer $M$, the two groups $mathscr C(N)(mathbb Q)$ and $mathscr C_{mathbb Q}(N)$ are equal. To achieve this, we show that all modular units on $X_0(N)$ on such $N$ are products of functions of the form $eta(mtau+k/h)$, $mh^2|N$ and $kinmathbb Z$ and determine the necessary and sufficient conditions for products of such functions to be modular units on $X_0(N)$.
311 - Pascal Boyer 2019
Let $Sh_K(G,mu)$ be a Shimura variety of KHT type, as introduced in Harris-Taylor book, associated to some similitude group $G/mathbb Q$ and a open compact subgroup $K$ of $G(mathbb A)$. For any irreducible algebraic $overline{mathbb Q}_l$-representa tion $xi$ of $G$, let $V_xi$ be the $mathbb Z_l$-local system on $Sh_K(G,mu)$. From my paper about p-stabilization, we know that if we allow the local component $K_l$ of $K$ to be small enough, then there must exists some non trivial cohomology classes with coefficient in $V_xi$. The aim of this paper is then to construct explicitly such torsion classes with the control of $K_l$. As an application we obtain the construction of some new automorphic congruences between tempered and non tempered automorphic representations of the same weight and same level at $l$.
211 - Jukka Keranen 2016
We compute the cohomology with compact supports of a Picard modular surface as a virtual module over the product of the appropriate Galois group and the appropriate Hecke algebra. We use the method developed by Ihara, Langlands, and Kottwitz: compari son of the Grothendieck-Lefschetz formula and the Arthur-Selberg trace formula. Our implementation of this method takes as its starting point the works of Laumon and Morel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا