ﻻ يوجد ملخص باللغة العربية
In the evolutionary computation research community, the performance of most evolutionary algorithms (EAs) depends strongly on their implemented coordinate system. However, the commonly used coordinate system is fixed and not well suited for different function landscapes, EAs thus might not search efficiently. To overcome this shortcoming, in this paper we propose a framework, named ACoS, to adaptively tune the coordinate systems in EAs. In ACoS, an Eigen coordinate system is established by making use of the cumulative population distribution information, which can be obtained based on a covariance matrix adaptation strategy and an additional archiving mechanism. Since the population distribution information can reflect the features of the function landscape to some extent, EAs in the Eigen coordinate system have the capability to identify the modality of the function landscape. In addition, the Eigen coordinate system is coupled with the original coordinate system, and they are selected according to a probability vector. The probability vector aims to determine the selection ratio of each coordinate system for each individual, and is adaptively updated based on the collected information from the offspring. ACoS has been applied to two of the most popular EA paradigms, i.e., particle swarm optimization (PSO) and differential evolution (DE), for solving 30 test functions with 30 and 50 dimensions at the 2014 IEEE Congress on Evolutionary Computation. The experimental studies demonstrate its effectiveness.
When it comes to solving optimization problems with evolutionary algorithms (EAs) in a reliable and scalable manner, detecting and exploiting linkage information, i.e., dependencies between variables, can be key. In this article, we present the lates
Transfer Optimization is an incipient research area dedicated to solving multiple optimization tasks simultaneously. Among the different approaches that can address this problem effectively, Evolutionary Multitasking resorts to concepts from Evolutio
The theory of evolutionary computation for discrete search spaces has made significant progress in the last ten years. This survey summarizes some of the most important recent results in this research area. It discusses fine-grained models of runtime
In January 2019, DeepMind revealed AlphaStar to the world-the first artificial intelligence (AI) system to beat a professional player at the game of StarCraft II-representing a milestone in the progress of AI. AlphaStar draws on many areas of AI rese
Population-based evolutionary algorithms have great potential to handle multiobjective optimisation problems. However, these algorithms depends largely on problem characteristics, and there is a need to improve their performance for a wider range of