ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization

70   0   0.0 ( 0 )
 نشر من قبل Benjamin Doerr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The theory of evolutionary computation for discrete search spaces has made significant progress in the last ten years. This survey summarizes some of the most important recent results in this research area. It discusses fine-grained models of runtime analysis of evolutionary algorithms, highlights recent theoretical insights on parameter tuning and parameter control, and summarizes the latest advances for stochastic and dynamic problems. We regard how evolutionary algorithms optimize submodular functions and we give an overview over the large body of recent results on estimation of distribution algorithms. Finally, we present the state of the art of drift analysis, one of the most powerful analysis technique developed in this field.



قيم البحث

اقرأ أيضاً

Not all generate-and-test search algorithms are created equal. Bayesian Optimization (BO) invests a lot of computation time to generate the candidate solution that best balances the predicted value and the uncertainty given all previous data, taking increasingly more time as the number of evaluations performed grows. Evolutionary Algorithms (EA) on the other hand rely on search heuristics that typically do not depend on all previous data and can be done in constant time. Both the BO and EA community typically assess their performance as a function of the number of evaluations. However, this is unfair once we start to compare the efficiency of these classes of algorithms, as the overhead times to generate candidate solutions are significantly different. We suggest to measure the efficiency of generate-and-test search algorithms as the expected gain in the objective value per unit of computation time spent. We observe that the preference of an algorithm to be used can change after a number of function evaluations. We therefore propose a new algorithm, a combination of Bayesian optimization and an Evolutionary Algorithm, BEA for short, that starts with BO, then transfers knowledge to an EA, and subsequently runs the EA. We compare the BEA with BO and the EA. The results show that BEA outperforms both BO and the EA in terms of time efficiency, and ultimately leads to better performance on well-known benchmark objective functions with many local optima. Moreover, we test the three algorithms on nine test cases of robot learning problems and here again we find that BEA outperforms the other algorithms.
Previous theory work on multi-objective evolutionary algorithms considers mostly easy problems that are composed of unimodal objectives. This paper takes a first step towards a deeper understanding of how evolutionary algorithms solve multi-modal mul ti-objective problems. We propose the OneJumpZeroJump problem, a bi-objective problem whose single objectives are isomorphic to the classic jump functions benchmark. We prove that the simple evolutionary multi-objective optimizer (SEMO) cannot compute the full Pareto front. In contrast, for all problem sizes~$n$ and all jump sizes $k in [4..frac n2 - 1]$, the global SEMO (GSEMO) covers the Pareto front in $Theta((n-2k)n^{k})$ iterations in expectation. To improve the performance, we combine the GSEMO with two approaches, a heavy-tailed mutation operator and a stagnation detection strategy, that showed advantages in single-objective multi-modal problems. Runtime improvements of asymptotic order at least $k^{Omega(k)}$ are shown for both strategies. Our experiments verify the {substantial} runtime gains already for moderate problem sizes. Overall, these results show that the ideas recently developed for single-objective evolutionary algorithms can be effectively employed also in multi-objective optimization.
Benchmarking plays an important role in the development of novel search algorithms as well as for the assessment and comparison of contemporary algorithmic ideas. This paper presents common principles that need to be taken into account when consideri ng benchmarking problems for constrained optimization. Current benchmark environments for testing Evolutionary Algorithms are reviewed in the light of these principles. Along with this line, the reader is provided with an overview of the available problem domains in the field of constrained benchmarking. Hence, the review supports algorithms developers with information about the merits and demerits of the available frameworks.
Recently, the discretization of decision and objective spaces has been discussed in the literature. In some studies, it is shown that the decision space discretization improves the performance of evolutionary multi-objective optimization (EMO) algori thms on continuous multi-objective test problems. In other studies, it is shown that the objective space discretization improves the performance on combinatorial multi-objective problems. However, the effect of the simultaneous discretization of both spaces has not been examined in the literature. In this paper, we examine the effects of the decision space discretization, objective space discretization and simultaneous discretization on the performance of NSGA-II through computational experiments on the DTLZ and WFG problems. Using various settings about the number of decision variables and the number of objectives, our experiments are performed on four types of problems: standard problems, large-scale problems, many-objective problems, and large-scale many-objective problems. We show that the decision space discretization has a positive effect for large-scale problems and the objective space discretization has a positive effect for many-objective problems. We also show the discretization of both spaces is useful for large-scale many-objective problems.
264 - Jinjin Xu , Yaochu Jin , Wenli Du 2021
Data-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization is always available on a central server for construction of surrogates. This assumption, however, may fail to hold when the data must be collected in a distributed way and is subject to privacy restrictions. This paper aims to propose a federated data-driven evolutionary multi-/many-objective optimization algorithm. To this end, we leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate. Then a new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values based on the local models. The performance of the proposed algorithm is verified on a series of multi/many-objective benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا