ترغب بنشر مسار تعليمي؟ اضغط هنا

The halo of M49 and its environment as traced by planetary nebulae

147   0   0.0 ( 0 )
 نشر من قبل Johanna Hartke
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The galaxy M49 (NGC 4472) is the brightest early-type galaxy in the Virgo Cluster. It is located in Subcluster B and has an unusually blue, metal-poor outer halo. Planetary nebulae (PNe) are excellent tracers of diffuse galaxy and intragroup light. We present a photometric survey of PNe in the galaxys extended halo to characterise its PN population, as well as the surrounding intragroup light (IGL) of the Subcluster B. PNe were identified based on their bright [OIII]5007 AA emission and absence of a broad-band continuum. We identify 738 PNe out to a radius of 155 kpc from M49s centre from which we define a complete sample of 624 PNe within a limiting magnitude of m_5007=28.8. Comparing the PN number density to the broad-band stellar surface brightness profile, we find a variation of the PN-specific frequency (alpha-parameter) with radius. The outer halo beyond 60 kpc has a 3.2 times higher alpha-parameter compared to the main galaxy halo, which is likely due to contribution from the surrounding blue IGL. We use the Planetary Nebulae Luminosity Function (PNLF) as an indicator of distance and stellar population. Its slope, which correlates empirically with galaxy type, varies within the inner halo. In the eastern quadrant of M49, the PNLF slope is shallower, indicating an additional localised, bright PN population following an accretion event, likely that of the dwarf irregular galaxy VCC1249. We also determined a distance modulus of mu = 31.29+/-0.08 for M49, corresponding to a physical distance of 18.1+/-0.6 Mpc, which agrees with a recent surface-brightness fluctuations distance. The PN populations in the outer halo of M49 are consistent with the presence of a main Sersic galaxy halo with a slight (B-V) colour gradient of 10${}^{-4}$ mag/arcsec surrounded by intragroup light with a very blue colour of (B-V)=0.25 and a constant surface brightness mu_V=28.0 mag/arcsec${}^2$.



قيم البحث

اقرأ أيضاً

M105 (NGC 3379) is an early-type galaxy in the Leo I group. This group is the nearest group that contains all main galaxy types and can thus be used as a benchmark to study the properties of the intra-group light (IGL) in low-mass groups. We use PNe as discrete stellar tracers of the diffuse light around M105. PNe were identified on the basis of their bright [OIII]5007 AA emission and the absence of a broad-band continuum. We compare the PN number density profile with the galaxy surface-brightness profile decomposed into metallicity components using published HST photometry in two halo fields. We identify 226 PNe candidates within a limiting magnitude of mlim = 28.1 from our Subaru-SuprimeCam imaging, covering 67.6 kpc along the major axis of M105 and the halos of NGC 3384 and NGC 3398. We find an excess of PNe at large radii compared to the stellar surface brightness profile from broad-band surveys. This excess is related to a variation in the luminosity-specific PN number $alpha$ with radius. The $alpha$-parameter value of the extended halo is more than 7 times higher than that of the inner halo. We also measure an increase in the slope of the PN luminosity function at fainter magnitudes with radius. We infer that the radial variation of the PN population properties is due to a diffuse population of metal-poor stars ([M/H] < -1.0) following an exponential profile, in addition to the M105 halo. The spatial coincidence between the number density profile of these metal-poor stars and the increase in the $alpha$-parameter value with radius establishes the missing link between metallicity and the post-AGB phases of stellar evolution. We estimate that the total bolometric luminosity associated with the exponential IGL population is 2.04x10^9 Lsun as a lower limit, corresponding to an IGL fraction of 3.8%. This work sets the stage for kinematic studies of the IGL in low-mass groups.
We present precision radial velocities and stellar population parameters for 77 star clusters in the Local Group galaxy M33. Our GTC and WHT observations sample both young, massive clusters and known/candidate globular clusters, spanning ages ~ 10^6 - 10^10 yr, and metallicities, [M/H] ~-1.7 to solar. The cluster system exhibits an age-metallicity relation; the youngest clusters are the most metal-rich. When compared to HI data, clusters with [M/H] ~ -1.0 and younger than ~ 4 Gyr are clearly identified as a disc population. The clusters show evidence for strong time evolution in the disc radial metallicity gradient (d[M/H]dt / dR = 0.03 dex/kpc/Gyr). The oldest clusters have stronger, more negative gradients than the youngest clusters in M33. The clusters also show a clear age-velocity dispersion relation. The line of sight velocity dispersions of the clusters increases with age similar to Milky Way open clusters and stars. The general shape of the relation is reproduced by disc heating simulations, and the similarity between the relations in M33 and the Milky Way suggests that heating by substructure, and cooling of the ISM both play a role in shaping this relation. We identify 12 classical GCs, six of which are newly identified GC candidates. The GCs are more metal-rich than Milky Way halo clusters, and show weak rotation. The inner (R < 4.5 kpc) GCs exhibit a steep radial metallicity gradient (d[M/H]/dR = -0.29+-0.11 dex/kpc) and an exponential-like surface density profile. We argue that these inner GCs are thick disc rather than halo objects.
111 - Hao Tian , Chao Liu , Yougang Wang 2020
We use K-giant stars selected from the LAMOST DR5 to study the variation of the rotational velocity of the galactic halo at different space positions. Modelling the rotational velocity distribution with both the halo and disk components, we find that the rotational velocity of the halo population decreases almost linearly with increasing vertical distance to the galactic disk plane, $Z$, at fixed galactocentric radius, $R$. The samples are separated into two parts with $6<R<12$ kpc and $12<R<20$ kpc. We derive that the decreasing rates along $Z$ for the two subsamples are $-3.07pm0.63$ and $-1.89pm0.37$ km s$^{-1}$ kpc$^{-1}$, respectively. Compared with the TNG simulations, we suggest that this trend is probably caused by the interaction between the disk and halo. The results from the simulations show that only the oblate halo can provide a decreasing rotational velocity with an increasing $Z$. This indicates that the Galactic halo is oblate with galactocentric radius $R<20$ kpc. On the other hand, the flaring of the disk component (mainly the thick disk) is clearly traced by this study, with $R$ between 12 and 20 kpc, the disk can vertically extend to $6sim10$ kpc above the disk plane. What is more interesting is that, we find the Gaia-Enceladus-Sausage (GES) component has a significant contribution only in the halo with $R<12$ kpc, i.e. a fraction of 23$-$47%. While in the outer subsample, the contribution is too low to be well constrained.
193 - Lodovico Coccato 2016
The kinematic and dynamical properties of galaxy stellar halos are difficult to measure because of the faint surface brightness that characterizes these regions. Spiral galaxies can be probed using the radio HI emission; on the contrary, early-type g alaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary nebulae (PNe) can be easily detected far out in the halo thanks to their bright emission lines. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on a few tens of galaxies where the kinematics of the stellar halos are measured. Here, I will review the main results obtained in this field in the last decades.
The Andromeda (M31) galaxy subtends nearly 100 sq. deg. on the sky, with severe contamination from the Milky Way halo stars whose surface density displays a steep gradient across the entire M31 field-of-view. Planetary Nebulae (PNe) are a population of stars firmly associated with M31, that are excellent tracers of light, chemistry and motion in galaxies. We present a 16 sq. deg. survey of the disk and inner halo of M31 with MegaCam@CFHT to identify PNe, characterize their luminosity-specific PN number and luminosity function (PNLF). PNe were identified based on their bright OIII 5007 $unicode{x212B}$ emission and absence of a continuum. Subsamples of the faint PNe were independently confirmed by matching with resolved Hubble Space Telescope sources from the PHAT survey and spectroscopic follow-up observations with HectoSpec@MMT. The current survey reaches 2 mag fainter than the previous most-sensitive survey. We identify 4289 PNe, of which only 1099 were previously known. By comparing the PN number density with the surface brightness profile of M31 out to ~30 kpc along the minor-axis, we find that the stellar population in the inner halo has a 7 times larger luminosity-specific PN number value than that of the disk. It indicates that the stellar population at deprojected minor-axis radii larger than ~10 kpc is different from that in the M31 disk. We measure the PNLF and find a bright cut-off and a slope consistent with the previous determination by Ciardullo et al. (1989). Interestingly, it shows a significant rise at the faint end, present in all radial bins covered by the survey, much steeper than that observed for the Magellanic clouds and Milky Way bulge. M31 shows two major episodes of star formation and the rise in the faint end of the PNLF is possibly associated with the older stellar population. It may also be a result of varying opacity of the PNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا