ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for temporal evolution in the M33 disc as traced by its star clusters

122   0   0.0 ( 0 )
 نشر من قبل Mike Beasley
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present precision radial velocities and stellar population parameters for 77 star clusters in the Local Group galaxy M33. Our GTC and WHT observations sample both young, massive clusters and known/candidate globular clusters, spanning ages ~ 10^6 - 10^10 yr, and metallicities, [M/H] ~-1.7 to solar. The cluster system exhibits an age-metallicity relation; the youngest clusters are the most metal-rich. When compared to HI data, clusters with [M/H] ~ -1.0 and younger than ~ 4 Gyr are clearly identified as a disc population. The clusters show evidence for strong time evolution in the disc radial metallicity gradient (d[M/H]dt / dR = 0.03 dex/kpc/Gyr). The oldest clusters have stronger, more negative gradients than the youngest clusters in M33. The clusters also show a clear age-velocity dispersion relation. The line of sight velocity dispersions of the clusters increases with age similar to Milky Way open clusters and stars. The general shape of the relation is reproduced by disc heating simulations, and the similarity between the relations in M33 and the Milky Way suggests that heating by substructure, and cooling of the ISM both play a role in shaping this relation. We identify 12 classical GCs, six of which are newly identified GC candidates. The GCs are more metal-rich than Milky Way halo clusters, and show weak rotation. The inner (R < 4.5 kpc) GCs exhibit a steep radial metallicity gradient (d[M/H]/dR = -0.29+-0.11 dex/kpc) and an exponential-like surface density profile. We argue that these inner GCs are thick disc rather than halo objects.



قيم البحث

اقرأ أيضاً

The galaxy M49 (NGC 4472) is the brightest early-type galaxy in the Virgo Cluster. It is located in Subcluster B and has an unusually blue, metal-poor outer halo. Planetary nebulae (PNe) are excellent tracers of diffuse galaxy and intragroup light. W e present a photometric survey of PNe in the galaxys extended halo to characterise its PN population, as well as the surrounding intragroup light (IGL) of the Subcluster B. PNe were identified based on their bright [OIII]5007 AA emission and absence of a broad-band continuum. We identify 738 PNe out to a radius of 155 kpc from M49s centre from which we define a complete sample of 624 PNe within a limiting magnitude of m_5007=28.8. Comparing the PN number density to the broad-band stellar surface brightness profile, we find a variation of the PN-specific frequency (alpha-parameter) with radius. The outer halo beyond 60 kpc has a 3.2 times higher alpha-parameter compared to the main galaxy halo, which is likely due to contribution from the surrounding blue IGL. We use the Planetary Nebulae Luminosity Function (PNLF) as an indicator of distance and stellar population. Its slope, which correlates empirically with galaxy type, varies within the inner halo. In the eastern quadrant of M49, the PNLF slope is shallower, indicating an additional localised, bright PN population following an accretion event, likely that of the dwarf irregular galaxy VCC1249. We also determined a distance modulus of mu = 31.29+/-0.08 for M49, corresponding to a physical distance of 18.1+/-0.6 Mpc, which agrees with a recent surface-brightness fluctuations distance. The PN populations in the outer halo of M49 are consistent with the presence of a main Sersic galaxy halo with a slight (B-V) colour gradient of 10${}^{-4}$ mag/arcsec surrounded by intragroup light with a very blue colour of (B-V)=0.25 and a constant surface brightness mu_V=28.0 mag/arcsec${}^2$.
The outer regions of disc galaxies are becoming increasingly recognized as key testing sites for models of disc assembly and evolution. Important issues are the epoch at which the bulk of the stars in these regions formed and how discs grow radially over time. To address these issues, we use Hubble Space Telescope Advanced Camera for Surveys imaging to study the star formation history (SFH) of two fields at 9.1 and 11.6 kpc along M33s northern major axis. These fields lie at ~ 4 and 5 V-band disc scale-lengths and straddle the break in M33s surface brightness profile. The colour-magnitude diagrams (CMDs) reach the ancient main sequence turnoff with a signal-to-noise ratio of ~ 5. From detailed modelling of the CMDs, we find that the majority of stars in both fields combined formed at z < 1. The mean age in the inner field, S1, is ~ 3 +/- 1 Gyr and the mean metallicity is [M/H] ~ -0.5 +/- 0.2 dex. The star formation history of S1 unambiguously reveals how the inside-out growth previously measured for M33s inner disc out to ~ 6 kpc extends out to the disc edge at ~ 9 kpc. In comparison, the outer field, S2, is older (mean age ~ 7 +/- 2 Gyr), more metal-poor (mean [M/H] ~ -0.8 +/- 0.3 dex), and contains ~ 30 times less stellar mass. These results provide the most compelling evidence yet that M33s age gradient reverses at large radii near the disc break and that this reversal is accompanied by a break in stellar mass surface density. We discuss several possible interpretations of this behaviour including radial stellar mixing, warping of the gaseous disc, a change in star formation efficiency, and a transition to another structural component. These results offer one of the most detailed views yet of the peripheral regions of any disc galaxy and provide a much-needed observational constraint on the last major epoch of star formation in the outer disc.
Open and globular star clusters have served as benchmarks for the study of stellar evolution due to their supposed nature as simple stellar populations of the same age and metallicity. After a brief review of some of the pioneering work that establis hed the importance of imaging stars in these systems, we focus on several recent studies that have challenged our fundamental picture of star clusters. These new studies indicate that star clusters can very well harbour multiple stellar populations, possibly formed through self-enrichment processes from the first-generation stars that evolved through post-main-sequence evolutionary phases. Correctly interpreting stellar evolution in such systems is tied to our understanding of both chemical-enrichment mechanisms, including stellar mass loss along the giant branches, and the dynamical state of the cluster. We illustrate recent imaging, spectroscopic and theoretical studies that have begun to shed new light on the evolutionary processes that occur within star clusters.
The individual star formation histories of bulges and discs of lenticular (S0) galaxies can provide information on the processes involved in the quenching of their star formation and subsequent transformation from spirals. In order to study this tran sformation in dense environments, we have decomposed long-slit spectroscopic observations of a sample of 21 S0s from the Virgo Cluster to produce one-dimensional spectra representing purely the bulge and disc light for each galaxy. Analysis of the Lick indices within these spectra reveals that the bulges contain consistently younger and more metal-rich stellar populations than their surrounding discs, implying that the final episode of star formation within S0s occurs in their central regions. Analysis of the $alpha$-element abundances in these components further presents a picture in which the final episode of star formation in the bulge is fueled using gas that has previously been chemically enriched in the disc, indicating the sequence of events in the transformation of these galaxies. Systems in which star formation in the disk was spread over a longer period contain bulges in which the final episode of star formation occurred more recently, as one might expect for an approximately coeval population in which the transformation from spiral to S0 occurred at different times. With data of this quality and the new analysis method deployed here, we can begin to describe this process in a quantitative manner for the first time.
We analyse the far-infrared properties of $sim$ 5,000 star-forming galaxies at $z<4.5$, drawn from the deepest, super-deblended catalogues in the GOODS-N and COSMOS fields. We develop a novel panchromatic SED fitting algorithm, $texttt{Stardust}$, th at models the emission from stars, AGN, and infrared dust emission, without relying on energy balance assumptions. Our code provides robust estimates of the UV-optical and FIR physical parameters, such as the stellar mass ($M_*$), dust mass ($M_{rm dust}$), infrared luminosities ($L_{rm IR}$) arising from AGN and star formation activity, and the average intensity of the interstellar radiation field ($langle U rangle$). Through a set of simulations we quantify the completeness of our data in terms of $M_{rm dust}$, $L_{rm IR}$ and $langle U rangle$, and subsequently characterise the distribution and evolution of these parameters with redshift. We focus on the dust-to-stellar mass ratio ($f_{rm dust}$), which we parametrise as a function of cosmic age, stellar mass, and specific star formation rate. The $f_{rm dust}$ is found to increase by a factor of 10 from $z=0$ to $z=2$ and appears to remain flat at higher$-z$, mirroring the evolution of the gas fraction. We also find a growing fraction of warm to cold dust with increasing distance from the main sequence, indicative of more intense interstellar radiation fields, higher star formation efficiencies and more compact star forming regions for starburst galaxies. Finally, we construct the dust mass functions (DMF) of star-forming galaxies up to $z=1$ by transforming the stellar mass function to DMF through the scaling relations derived here. The evolution of $f_{rm dust}$ and the recovered DMFs are in good agreement with the theoretical predictions of the Horizon-AGN and IllustrisTNG simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا